Black Holes and The Information Paradox

March 2, 2020

► What is a black hole?

What is a black hole?

► Common wisdom:

What is a black hole?

- ► Common wisdom:
 - ► It's black, because it's heavy enough to trap light.

What is a black hole?

- Common wisdom:
 - It's black, because it's heavy enough to trap light.
 - Since it traps light, it traps everything that falls in.

Are black holes really black?

- Are black holes really black?
- ► No!

- Are black holes really black?
- ► No! Stephen Hawking discovered black holes glow.

- Are black holes really black?
- ► No! Stephen Hawking discovered black holes glow.

They're like lumps of coal

- Are black holes really black?
- ► No! Stephen Hawking discovered black holes glow.

They're like lumps of coal heated to some temperature.

• Eventually, it disappears altogether.

• Eventually, it disappears altogether.

- Eventually, it disappears altogether.
- Hawking asked: what happens to the things that fell in?

> There are two options. Each has a major problem!

- There are two options. Each has a major problem!
- ► First option: information is erased. It gets eaten up!

- There are two options. Each has a major problem!
- ► First option: information is erased. It gets eaten up!

- There are two options. Each has a major problem!
- ► First option: information is erased. It gets eaten up!

Problem: this violates quantum mechanics!

- There are two options. Each has a major problem!
- ► First option: information is erased. It gets eaten up!

Problem: this violates quantum mechanics!
 A basic law is that information cannot be destroyed.

Second option: information is encoded.

- Second option: information is encoded.
- ► In other words, the black hole acts like a computer.

- Second option: information is encoded.
- In other words, the black hole acts like a computer.
 It processes the information and sends it out again.

- Second option: information is encoded.
- In other words, the black hole acts like a computer. It processes the information and sends it out again.

- Second option: information is encoded.
- In other words, the black hole acts like a computer. It processes the information and sends it out again.

Problem: the radiation looks random!

- Second option: information is encoded.
- In other words, the black hole acts like a computer. It processes the information and sends it out again.

Problem: the radiation looks random!
 It seems impossible to get information from randomness.

• Let's resolve the paradox by simulating a black hole.

- Let's resolve the paradox by simulating a black hole.
- Make "objects" with the bits on your table.

- Let's resolve the paradox by simulating a black hole.
- Make "objects" with the bits on your table.

- Let's resolve the paradox by simulating a black hole.
- Make "objects" with the bits on your table.

The black hole is the bucket.

- Let's resolve the paradox by simulating a black hole.
- Make "objects" with the bits on your table.

The black hole is the bucket.

- Let's resolve the paradox by simulating a black hole.
- Make "objects" with the bits on your table.

The black hole is the bucket. Put the objects in!

- Let's resolve the paradox by simulating a black hole.
- Make "objects" with the bits on your table.

The black hole is the bucket. Put the objects in!

► This is the end result:

► This is the end result:

► This is the end result:

The black hole evaporates into a bunch of random bits.

This is the end result:

The black hole evaporates into a bunch of random bits.

But we haven't destroyed any information!

This is the end result:

The black hole evaporates into a bunch of random bits.

But we haven't destroyed any information!
 We encoded it randomly by dumping it on the ground.

This is the end result:

The black hole evaporates into a bunch of random bits.

- But we haven't destroyed any information!
 We encoded it randomly by dumping it on the ground.
- ► To recover what fell in, just study dumping very carefully!

Well, that solves the Information Paradox.

Well, that solves the Information Paradox.

Well, that solves the Information Paradox.

Looks like someone encoded some donuts for us. How thoughtful!

THE END