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Introduction

I I’m a theoretical physicist. I study how information
escapes from black holes. (Sneakily, is the answer.)

I Sadly, this isn’t very techy. So instead, I’ll talk about
quantum computing and parallel worlds.



Breaking locks

I Let’s focus on a problem: guessing a combination lock.
Three-digit locks have 103 = 1000 combinations.

I We could also use a ten-bit lock. This has ten ones and
zeroes, with 210 = 1024 combinations altogether.

I Above, we showed combination 739 in both locks.



Brute force

I Brute force is the technique of testing every possibility.
For most combinations, this takes a while!

I On average, you will test half the combinations, or ∼ 500.



Forking paths

I Let’s draw a picture of these choices for the binary lock.

I Each combination corresponds to a unique path specified
by its digits. In binary, 0 = go left and 1 = go right.

I In our example, 739 = 10111000112.
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Parallel worlds

I Each forking path is like a parallel world. Little decisions
(like digits in the lock) add up to different realities.

I Breaking the lock means finding the parallel world where
we test the right combination. It would be great if we
could explore them all at once!



Schrödinger’s magic box

I What if I told you there was a magic box for exploring
parallel worlds? And that any box would do?

I It’s easy: insert a radioactive isotope and close the lid.

I (This is just Schrödinger’s cat, but without the cat.)



Superposition

I The isotope can either decay or not decay. In fact,
according to quantum mechanics, it does both!

I So, our box makes parallel worlds using quantum magic.

I These worlds are in a superposition, which we indicate
with a grey rectangle.
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Parallel (world) computing

I Maybe you’ve guessed our next trick: use a magic box to
check all lock combinations at once.

I For the ten-bit lock, we need ten isotopes in the box.
Each isotope creates parallel worlds for one bit.

I With this superposition, we test all combinations at once!



The magic portal

I In particular, we test the correct answer. It seems
quantum mechanics can break locks instantaneously!

I The catch: looking inside takes you to a random parallel
world. Chances are, this isn’t the world we broke the lock!

I So, magic boxes are portals to the multiverse!
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Shrinking the rectangle

I When we open the box, it takes us to a random point in
the grey area. Superpositon giveth and taketh away!

I If we could somehow shrink the grey rectangle, we’d
increase our chances of landing in the right world.
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Quantum computers

I A quantum computer is a magic box to shrinks rectangles.
It visits all worlds, ask questions, shuffles them around.

I Like us, quantum computers can also fall through the
gateway into a random world. This is called decoherence.

I This is fine — if they have time to shrink the rectangle!
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The Holy Grail

I The time before decoherence is called coherence time.

I The long-term Holy Grail is a computer which juggles as
many worlds as it likes with long coherence times.

I This is called a universal (any operations allowed),
fault-tolerant (coherence time long) quantum computer.
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Breaking the internet

I The Holy Grail is very powerful. It takes about 50 steps
to break the combination lock (using Grover search).

I In fact, it can break the internet! Internet security is
based on the RSA cryptosystem. This can be immediately
broken on a quantum computer using Shor’s algorithm.

I So should we be freaking out? Not yet!



A NISQ-y business

I In reality, the Holy Grail is many years away. It’s hard!

I Near term: small, error-prone, and non-universal, also
called Noisy Intermediate-Scale Quantum (NISQ).

I These NISQ devices juggle only a few worlds, can’t do
many juggling tricks, and drop worlds all the time.
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Conclusion

I The billion-dollar question: what can you do with NISQ?

I Short answer: we have no idea! Long answer involves
technology, engineering, physics and computer science.

I Career-wise, you could do much worse than trying to
build a magic box filled with parallel worlds. Thanks!



Bonus: quantum lockpicking

I No doubt, some of you want to know more! Let’s see
how to break the lock using quantum mechanics.

I For a single bit, if I open the box, I see either 0 or 1.

I These outcomes have different probabilities, which we
respectively call p0 and p1. They must add to p0 +p1 = 1.



Superpositions and amplitudes

I Remember that a superposition involves both outcomes.
We write this as a sum with coefficients α0, α1.

I The probabilities of seeing 0 or 1 are just these
coefficients squared. In math, p0 = (α0)2 and p1 = (α1)2.
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A circular definition

I But since the probabilities add to 1, this means

(α0)2 + (α1)2 = 1.

This is the equation of a unit circle!

I So we can draw all the states of a single quantum bit as a
circle of radius 1, with coordinates (x , y) = (α0, α1).



Legal moves

I What moves does quantum mechanics allow? Easy: we
can rotate by some angle or reflect around/along an axis.

I You might ask: why are these the legal ones? The answer
is that they preserve distances between states.

I (Why is this necessary? Well, because Nature says so.)



A one-bit lock

I Let’s try and solve a single bit lock. Suppose 1 is the
correct combination. We will use two moves:

I The uniform flip flips around the uniform superposition,
which has α0 = α1. The solution slide slides along the
axis of the solution, vertical for 1 and horizontal for 0.



A bit too hard

I Let’s start in the uniform superposition and try to get
close to the solution. That increases our chances of
observing 1 when we open the box! (Right now it’s 50%.)

I Sadly, our move set can’t improve those odds.

I At each point, there’s only one sensible operation to use,
and none get us closer to the answer (the vertical axis).
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Many bits make Grover work

I Let’s try more bits! We draw a similar circle, containing
the uniform superposition U and solution S .

I With many bits, the angle between U and S gets bigger.

I We start in state U then alternate between slides and
flips. Because the angle is bigger, we get much closer!
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49 steps

I In general, for N different lock combinations, it will take
around (π/2)

√
N flips and slides.

I For instance, for our ten-bit lock, the number of steps is

π

2

√
210 ≈ 50.



Bonus conclusion

I So, “shrinking the rectangle” really means rotating the
state of the magic box close to the answer.

I Then the probability of falling into the universe where we
solved the problem (once we open the box) is high.

I Hope this gets you excited to learn more!


