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Abstract

We derive an expression for the genus g partition function of the closed bosonic

string, also called the string measure. Physically, these represent loop correc-

tions to the vacuum amplitude. The derivation uses tensor calculus on Rie-

mann surfaces, to which we give a self-contained introduction.
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1. Introduction

1.1. Invitation. In quantum field theory (QFT), the basic objects are point particles.
As they propagate through space and interact with each other, they describe a graph
called a Feynman diagram. If the interactions are weak, we can calculate scattering
amplitudes perturbatively, considering only Feynman diagrams up to some order in
the interaction strength. Not all Feynman diagrams are different: they can be related
by symmetries of the graphs themselves (graph automorphisms), and we shouldn’t
overcount.

In string theory, the basic objects are 1-dimensional rather than 0-dimensional. They
can propagate through space and interact, just like point particles, but instead of
sweeping out a graph they sweep out a surface. Just like perturbation theory in QFT,
string perturbation theory involves summing over distinct surfaces. There are various
ways for surfaces to be distinct. They could be topologically distinct (which will corre-
spond to different orders in the interaction parameter), or homoeomorphic and differ
in their rigid structure, that is, their geometry.
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Figure 1. Some vacuum bubbles in QED at different orders in e. The last two
diagrams are naively different, but related by a graph symmetry.
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Figure 2. Some vacuum diagrams in closed bosonic string theory at different
orders in gs. The second and third diagrams are naively different, but related
by a diffeomorphism (Dehn twist).

As with Feynman diagrams, apparently different geometries can correspond to the
same diagram in perturbation theory. They can be connected by symmetries of the sur-
face itself (diffeomorphisms) or gauge symmetries of the theory, since the metric on
the surface is now a physical field. For a given homeomorphism class, the set of phys-
ically distinct surfaces is called the moduli space. Understanding the moduli space,
and calculating its contribution to scattering amplitudes, involves considerably more
mathematical machinery than the point-particle case. These notes aim to provide a
brief and non-rigorous introduction to some of these tools.

1.2. Background. We begin with some background string theory material, focusing
on closed bosonic strings. The worldsheet Σ is a two-dimensional manifold swept out
by a closed loop (or loops) as time evolves. We will treat it as Euclidean from the
outset. It has local coordinates (σα) = (σ, τ), an auxiliary metric γαβ, and supports
some scalar fields {X} : Σ → M which map the worldsheet to a target manifold M .
For simplicity, we assume M = R1,D−1 is flat, D-dimensional Minkoswki space, with
metric ηµν = diag(−1,+1, . . . ,+1) and fields Xµ.

The dynamics of the theory is governed by the Polyakov action. Loosely speaking,
this is just gravity on the worldsheet minimally coupled to the scalars Xµ:

SP[X, γ] :=
T

2

∫
d2σ
√
γγαβηµν∂αX

µ∂βX
ν +

λ

4π

∫
d2σ
√
γR(2)

:= SXP [X, γ] + λχ(Σ),(1)

where γ := | det γ|,R(2) is the worldsheet Ricci scalar, and T := 1/2πα′ is the string ten-
sion. We will discuss the coupling constant λ below. In two dimensions, the Einstein-
Hilbert term is not genuinely dynamical. Using the Gauss-Bonnet theorem, we have
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rewritten it on the second line of (1) in terms of a topological invariant of the world-
sheet, namely the Euler characteristic

(2) χ(Σ) := 2− 2g − b,
where b is the number of boundaries and g the number of holes in the worldsheet. See
Fig. 3 for an example. In the case of closed strings, b will simply be the number of
asymptotic string states in a scattering process.

b=2

g=1

Σ

Figure 3. A worldsheet with two boundaries and one hole. It has Euler charac-
teristic χ = 2− 2g − b = −2.

The Polyakov action (1) possesses two important gauge redundancies. These are
not physical symmetries, but rather, different descriptions of the same physics. First,
Weyl invariance under a rescaling of the metric:

γαβ → γ̃αβ = e2ω(σ)γαβ

δγαβ = 2ω(σ)γαβ.(3)

Second, diffeomorphism invariance under a change of worldsheet coordinates:

σα → σ̃α(σ), γαβ(σ)→ γ̃αβ(σ̃) =
∂σλ

∂σ̃α
∂σδ

∂σ̃β
γλδ(σ)

δσα = −εα, δγαβ = ∇αεβ +∇βεα.(4)

In both cases, we have written the infinitesimal version as well. For a worldsheet Σ,
we denote the corresponding symmetry groups by Weyl(Σ) and Diff(Σ) respectively,
and the gauge group is a semidirect product

G := Weyl(Σ) o Diff(Σ).(5)

Note that if we fix the form of the metric, the gauge symmetry is now the conformal
group: diffeomorphisms that can be undone by a Weyl transformation.1

To quantise the theory, the most elegant method is the path integral. Morally speak-
ing, this is just a sum over classical field configurations weighted by e−iS. For a Eu-
clidean worldsheet, the scattering amplitude for b asymptotic string states {α}, cre-
ated by vertex operators {Vα}, is given by the path integral

A(b)({α}) =

∫
DX Dγ e−SP[X,γ]

∏
α

Vα

=
∑
g≥0

e−λ(2−2g−b) 1

vol(Gg,b)

∫
Map(Σg,b,M)×Met(Σg,b)×Vg,b

DX Dγ e−SXP [X,γ]
∏
α

Vα,(6)

1Incidentally, this overlap is the reason we need to use a semidirect product.
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where Map(Σg,b,M) denotes the space of embeddings, Met(Σg,b) the space of metrics
on a worldsheet Σg,b with g handles and b boundaries, and Vg,b is the space of vertex
insertions (which we will henceforth ignore).

Schematically, vol(Gg,b) is the volume of orbits of the gauge groupG on Map(Σg,b,M)×
Met(Σg,b); we will discuss this more in §3.1. This is the same as directly integrating
over the gauge orbits themselves,

Map(Σg,b,M)×Met(Σg,b)

G
:= Eg,b ×Mg,b,(7)

whereMg,b := Mod(Σg,b)/G is the moduli space of physically distinct metrics described
earlier, and Eg,b := Map(Σg,b,M)/G.

We will focus specifically on the vacuum amplitude Z := A(0) where there are no
asymptotic string states. Setting b = 0 in (6), we can write

Z :=
∑
g≥0

Zg =
∑
g≥0

g2−2g
s

∫
Eg×Mg

DX Dγ e−SXP [X,γ].(8)

The full vacuum amplitude Z is a sum over “loop amplitudes” Zg at different orders in
the string coupling constant gs := e−λ. If gs is small, this is a genuine perturbation ex-
pansion for the vacuum amplitude; the first few terms are depicted in Fig. 2. Our goal
will be to write an explicit expression for Zg in terms of certain differential operators
on the worldsheet.

2. Complex geometry

2.1. Teichmüller and MCG. Let’s look at the symmetries of Σ in a little more detail.
First, consider the subgroup of “small” diffeomorphisms of Σ, that is, the identity
component Diff0(Σ). Restricting the gauge group G0 := Diff0(Σ) o Weyl(Σ) to these
small diffeomorphisms, and taking the quotient, yields the Teichmüller space of Σ:

Teich(Σg) :=
Met(Σg)

G0

.(9)

Teichmüller space is finite-dimensional, with the dimension depending on genus:

dimR Teich(Σg) =


0 g = 0

2 g = 1

−3χ(g) g ≥ 2.

(10)

This follows from the Riemann-Roch theorem (22), as we will show below. For the
torus (g = 1), the Tëichmuller space is just the set of allowed complex parameters τ ,
namely the upper half-plane H := {τ : =(τ) > 0}. This is indeed two-dimensional.

The components of Diff(Σ) form the mapping class group,

MCG(Σ) :=
Diff(Σ)

Diff0(Σ)
=

G

G0

=
Teich(Σ)

Mg

.(11)

Viewed a different way, the Teichmüller space Teich is the universal covering space
forMg = Teich/MCG: they share the same local structure (including real dimension),
but while Teich(Σg) is simply connected,Mg is topologically nontrivial due to the MCG
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quotient. We can think of the MCG as the remaining “topological” gauge redundancy
after locally fixing conformal gauge. See Fig. 4 for a cartoon of the different groups
and quotients involved.

(a)

Mg

Met(Σg)

G

(b)

Diff ×Weyl

id

MCG(Σg)

(c)

Teich

G0

G}G0

Figure 4. (a) The space of metrics is fibred by G, with base space Mg. Equiv-
alently, it is fibred by a coarser group G0 with larger base space Teich. (b) A
cartoon of the gauge group G, with diffeomorphisms split into components, and
the identity marked. (c) The MCG is the quotient of Diff by Diff0.

In the case of the torus, for instance, the mapping class group is PSL(2,Z), gener-
ated by the Dehn twists S and T around the periods of the torus. In general, the MCG
is generated (non-minimally) by the 3g − 1 Dehn twists around red, blue and green
loops pictured in Fig. 5(a). To perform a Dehn twist around a loop γ ⊂ Σ, we excise
a small neighbourhood of γ, twist one of the boundaries by 2π, then reglue. The pro-
cedure is illustrated in Fig. 5(b). We can explicitly calculate the action of Dehn twists
on the first homology class H1(Σ;Z), generated by the red and blue loops [1], but this
will be unnecessary for our purposes.

MCG(Σ)=spanZ(           )

(a) (b)

✂

Σ

Figure 5. (a) A Riemann surface of genus g = 4. The red and blue loops provide
a basis for the homology group H1, while the Dehn twists around the red, blue
and green loops generate the mapping class group MCG(Σ). (b) A Dehn twist
around the red loop. First cut, then twist by 2π, then glue.

2.2. Calculus on Riemann surfaces. Let Σg be a Euclidean worldsheet of genus g.
On any local coordinate chart, we can choose the conformal gauge

ds2 = e2ω(σ)(dσ2 + dτ 2).(12)
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Recall that we can introduce complex coordinates, z := σ + iτ , z̄ := σ − iτ , with
corresponding 1-forms

dz = dσ + idτ, dz̄ = dσ − idτ,(13)

vectors (or derivative operators)

∂ =
1

2
(∂σ − i∂τ ), ∂̄ =

1

2
(∂σ + i∂τ ).(14)

In complex coordinates, the conformal metric takes the form

ds2 =
1

2
e2ω(z,z̄)

[
0 1
1 0

]
.(15)

On an overlapping chart with coordinates w, w̄, we have an off-diagonal metric of
the form (15) just in case the transition function is holomorphic, with invertible w =
w(z), w̄ = w̄(z̄). This means that Σg is not only a real 2-manifold, but a Riemann surface.

As usual, we use the metric (15) to raise and lower indices. Since it is off-diagonal,
we can always raise or lower a z̄-index to obtain a z-index, and we can restrict our-
selves to tensor fields with z indices only. Under a coordinate transformation z → w(z),
vectors V and one-forms θ transform as

V z → V w = ∂zwV
z, θz → θw = (∂zw)−1θz.

Thus, for a tensor T z···zz···z with n upstairs indices and m downstairs indices, built from
the tensor product of vectors and one-forms, we have

T z···zz···z → Tw···ww···w = (∂zw)n−m T z···zz···z .(16)

The difference n −m is called the helicity of the field. We denote the set of helicity k
tensor fields on Σ by H(k)(Σ).

We can differentiate these fields using the covariant derivatives ∇z,∇z̄. However,
if we want to ensure our differentiated fields only have z indices, we should consider
∇z = γzz̄∇z̄. Note that, from the index structure, ∇z maps H(k)(Σ) → H(k−1)(Σ), while

∇z maps H(k)(Σ) → H(k+1)(Σ). If we wish to be careful, we can write ∇(k)
z ,∇z

(k) to
record the helicity space being acted on. To see how these operators act on tensor
fields, we first calculate the Christoffel symbols for (15):

Γzzz =
1

2
γzα(2∂γzα − ∂αγzz) = γzz̄∂γzz̄ = 2∂ω, Γz̄z̄z̄ = 2∂̄ω,(17)

with other symbols (in particular Γzz̄z) vanishing. From the usual rules for covariant
differentiation, it follows that for T ∈ H(k)(Σ),

∇zT
z···z
z···z = (∂ + kΓzzz)T

z···z
z···z = (∂ + 2k∂ω)T z···zz···z(18)

∇zT z···zz···z = γzz̄(∂̄ + kΓzz̄z)T
z···z
z···z = γzz̄∂̄T z···zz···z .(19)

Define an inner product on H(k)(Σ) by

(T, T ′) :=

∫
d2z
√
γ[γzz̄]

kT̄ T ′.(20)
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Here, T̄ the complex conjugate of T , with all z indices replaced by z̄ indices, and
coefficients also conjugated. Our covariant derivatives are adjoint with respect to the
inner product in the sense that if T ∈ H(k)(Σ) and T ′ ∈ Hk−1(Σ), then a calculation [4]
shows that

(T,∇zT ′) = −(∇zT, T ′).(21)

The difference in kernels between “adjacent” operators is governed by the Riemann-
Roch theorem:

(22) dimC ker∇(k)
z − dimC ker∇z

(k−1) = (2k − 1)(g − 1).

This is proved in [5] using Faddeev-Popov ghosts, and the Atiyah-Singer index theorem
in [4]. I have sadly omitted the proof for lack of space.

On each helicity subspace H(k)(Σ), we can define a Laplacian by acting with our
adjoint derivatives in turn. There are two choices depending on the order we take
them, which we label ∆+ := −∇z∇z or ∆− := −∇z∇z. These operators are different,
as we can see from (18) and (19). For instance, recalling that γzz̄ = 2e−2ω,

∆+
(k) = −∇(k+1)

z ∇z
(k) = 2

(
∂ + 2(k + 1)∂ω

)
· e−2ω∂̄

= −2e−2ω[−2∂ω + ∂∂̄ + 2(k + 1)∂ω∂̄]

= −2e−2ω[∂∂̄ + 2k(∂ω)∂̄].(23)

A similar calculation shows that

∆−(k) = −2e−2ω[∂∂̄ + 2k(∂ω)∂̄ + 2k(∂∂̄ω)].(24)

The spectrum of these Laplacians will prove crucial. Incidentally, heat kernel regular-
isation of these spectra provides another proof of Riemann-Roch [1].

3. String measure

3.1. Groups and Jacobians. We now return to the loop amplitudes in (8). The basic
strategy is sketched in (6) and (7): perform the integral over gauge orbits by integrat-
ing over the full, gauge-redundant space and dividing by the volume of orbits. First of
all, we note that for general D,

vol(Gg) = vol(MCG) · vol(Diff0 o Weyl)

= vol(MCG) · vol(Diff0)vol(Weyl)

vol(CKG)
,(25)

where CKG(Σ) is the overlap of Diff0 and Weyl, i.e. the group of “small” conformal
transformations in Diff0(Σ). We can think of these as elements of G0 which have no
effect on the metric.

For the critical dimension D = 26, the combined measure DX Dγ is Weyl invariant,2

so the gauge orbit is larger by a factor vol(CKG):

vol(Gg) = vol(MCG)vol(Diff0)vol(Weyl), forD = 26.(26)

2Of course, classically the theory is conformally invariant for all D.
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Figure 6. Following [7], a Venn diagram with physical changes to the metric
(blue), gauge changes (purple), and gauge transformations which do not affect
the metric (red).

Met

Map
Dγ

DX1

J

D(slice)

D(orbit)
MCG

D[δγ]

D[δX]
DX

Dγ

Figure 7. (a) Two factorisations of the field space: Met ×Map and orbit × slice.
The volume elements differ by a Jacobian factor J . (b) The measure for small
deformations mapped by MCG onto the whole space.

The vectors εα ∈ CKG(Σ) are called conformal killing vectors (CKVs), and satisfy
δγαβ = γαβ∇λε

λ. Equivalently, they are in the kernel of the operator

(27) [P1ε]αβ :=
1

2

(
∇αεβ +∇βεα − γαβ∇λε

λ
)
.

This is just the projector onto symmetric traceless tensors. The space of CKVs is finite
dimensional,3 with basis vectors Φα

j and associated (real) deformation parameters aj

for j = 1, . . . , k.
The adjoint P †1 with respect to our inner product (20) maps symmetric traceless

tensors to vectors, with the form

[P †1h]α := −2∇βhαβ.(28)

It is easiest to see that these are adjoint in complex coordinates. First, from definition
(27), we have

[P1ε]
zz = ∇z

(1)ε
z, [P1ε]zz = ∇(1)

z εz.(29)

Similarly, we apply (28) to find

[P †1h]z = ∇(2)
z hzz, [P †1h]z = ∇z

(−2)hzz.(30)

3In complex coordinates, these are just entire holomorphic functions. On the plane, there are infin-
itely many of these, but on the sphere we only have global conformal transformations (k = 2 ·3 = 6). On
the torus, only constant functions are entire, corresponding to translations (k = 2). Finally, for genus
g ≥ 2, entirety is so restrictive that no CKVs exist. See [5].

8



Since ∇(k+1)
z and ∇z

(k) are adjoint by (21), it follows that P1 and P †1 are adjoint. From

(29) and (30), we can view P1 and P †1 as acting on H(1) ⊕ H(−1) → H(2) ⊕ H(−2) and
H(2)⊕H(−2) → H(1)⊕H(−1) respectively. This means that the Laplacians of §2.2 appear
in the product P †1P1:

(31) P †1P1 =

[
∇(2)
z

∇z
(−2)

][
∇z

(1)

∇(−1)
z

]
=

[
∆+

(k)

∆−(k)

]
.

To find the volumes in (25), we change from (X, γ) coordinates to coordinates along
the moduli space (called the gauge slice) fibred by orbits:

DX Dγ = J D[orbit] · D[slice].

The integral along D[orbit] cancels the group volumes, leaving an integral over moduli
space with a Jacobian factor J . We will use this trick to calculate vol(Diff0)vol(Weyl),
and deal with the remaining volumes in other ways. In particular, we will restrict the
path integral to small deformations of the metric γαβ and fields Xµ,

DX Dγ → D[δX]D[δγ].

The “large” components are obtained from the action of MCG.
To actually calculate these Jacobians, we need to specify the integration measure

for each variable. In complex coordinates, we define the measure for any tensor field
ϑ using the inner product (20):

(32) 1 :=

∫
Dϑ exp

[
−1

2
||ϑ||2

]
, ||ϑ||2 := (ϑ, ϑ).

Small deformations of ϑ will lead to a Gaussian integral we can explicitly solve to find
the Jacobian. This is like the elementary trick used to find the polar Jacobian J = r:

1 =

∫
dvx dvy

2π
e−(v2x+v2y)/2 = J

∫
dvr dvθ

2π
e−(v2r+r2v2θ)/2 = J r−1.

3.2. Metric deformations. Let’s consider small deformations of the metric. We can
split these into three components: Weyl transformations (with parameter δω), diffeo-
morphisms (parameter εα), and (complex) displacements in Teichmüller space. We
label the tangent vectors of Teich(Σ) by µi for i = 1, . . . , n, n = dimC Teich(Σ), ac-
companied by deformation parameters τ i. The µi, called Beltrami differentials, are
symmetric, traceless 2-tensors since they live in the tangent space of Teich(Σ).

We can shift the contribution of CKVs into the Weyl component, and project ε onto
traceless symmetric deformations P1ε, since the trace component is a CKV. Alterna-
tively, we can choose ε̃ ∈ (ker∇z)

⊥. Similarly, we keep only the orthogonal component
of µi, µ⊥i ∈ kerP †1 = (imP1)⊥. Morally, the result is that we can decompose the set of
metric deformations into the orthogonal sum

{δγ} = Weyl⊕ imP1 ⊕ kerP †1 .

Let’s see to the details. In complex coordinates the metric deformation reads

δγzz = ∇z ε̃z + τ iµizz, δγzz̄ = δωγzz̄.(33)
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Split µi over the image of P1 and the kernel of P †1 :

(34) µi := P1vi + α`iφ`,

where vi is a vector chosen for each µi, and φ` is a basis of kerP †1 . We can incorporate
the first part into ε̃ by defining ε̄ := ε̃ + 2τ ivi. The φi ∈ kerP †1 are called quadratic
differentials. Taking an inner product of (34) with φm, we find

(35) α`i = [(φ, φ)−1]`m(µi, φm).

where we regard [(φ, φ)]`m := (φ`, φm) as a matrix.
By orthogonality and (35), we have

||δγ||2 = ||δγzz̄||2 + ||∇z ε̄z||2 + τ̄ iτ j(α`iφ`, α
m
j φm)

= ||δω||2 + ||∇z ε̄z||2 + τ̄ iτ j[(φ, φ)−1]`m(φ`, µi)(µj, φm).(36)

In particular, we are using that γzz, γzz̄ live in orthogonal helicity spaces. Using (32)
and the Gaussian function integral (with O an operator on tensors ϑ)∫

Dϑ exp

[
−1

2
ϑOϑ

]
= Cϑ[detO]−1/2,

we can calculate the Jacobian for the metric deformation:

1 =

∫
Dγ exp

[
−1

2
||δγ||2

]
= Jγ

∫
dnτ Dε̄Dφ exp

[
−1

2

(
||∇z ε̄z||2 + ||τ iφizz||2 + ||δωγzz̄||

)]
= Jγ

∫
D[δω] exp

[
−1

8
e4ω||δω||2

] ∫
Dε̄ exp

[
−1

8
||P1ε̄||2

]
×
∫

dnτ exp

[
−1

2

(
τ̄ iτ j[(φ, φ)−1]`m(φ`, µi)(µj, φm)

)]
= CωCε̄CτJγ

[
det |φ, µ|2 det ′(P †1P1)

det(φ, φ)

]
.

Note that since τ is complex, we do the Gaussian functional integral twice. Throwing
away the irrelevant (divergent) constant CωCε̄Cτ and using (31), we find

(37) Jγ =

[
det |φ, µ|2 det ′(∆+∆−)

det(φ, φ)

]
.

Note that we have also shifted ε→ ε̄. We can shift back and calculate the associated
measure in the same way. The details are similar to our derivation of (37), and we find

1 =

∫
Dε exp

[
−1

2
||ε||2

]
= Jε

∫
dnτ dkaDε̄ exp

[
−1

2
||ε̄||2 − 1

2
||ajΦj||2 − 2||τ ivi||2

]
∼ Jε [det(Φ,Φ)]−1/2 .(38)
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We end this section by noting that the kernel of P1 = ∇z
(1) ⊕ ∇

(−1)
z is CKG, while

the kernel of P †1 = ∇(2)
z ⊕∇z

(−2) gives a basis of quadratic differentials for Teichmüller
space [3]. Thus, the Riemann-Roch theorem (22) implies

dimC kerP †1 − dimC kerP1 = dimC ker∇(2)
z − dimC ker∇z

(1)(39)

− dimC ker∇(−1)
z + dimC ker∇z

(−2)

= 3(g − 1)

= dim Teich− dim CKVs.

Since there are no CKVs for g ≥ 2, we recover the result quoted earlier for the dimen-
sion of Teichmüller (and hence moduli) space:

dimR(Teich(Σg)) = dimR(Mg) = −3χ(g).

3.3. Field deformations. We can carefully perform the deformations δX in slice-
orbit coordinates, but there is a simpler way to do things. Recall that the fields live
in the space X ∈ Map(Σg,M), with coset representatives X̃ ∈ Eg on each orbit. A
deformation of X will decompose into a deformation of the representative X̃,4 and
Taylor expansion terms proportional to ε and ajΦj.

Since (37) and (38) already rotate into ε, we can ignore that deformation and restrict
to the change of coodinates X → (X̃, a),5 with associated Jacobian JX . As it turns out,
we can reduce JX e−S

X
P to an integral over the redundant field space X, since∫

DX e−S
X
P =

∫
dkaDX JX e−S

X
P = vol(CKG)

∫
DX̃ JX e−S

X
P ,(40)

where we used the fact that the Jacobian are independent of the CKVs.
We can explicitly perform the functional integral over X. First, note that we can

integrate the X component of the Polyakov action by parts, yielding

SXP [X, γ] = −T
2

∫
d2σ
√
γ Xµ∆Xµ = −T

2
(X,∆X)LV,(41)

where ∆ is the usual scalar Laplacian, and (·, ·)LV is the natural inner product for a
multiplet of worldsheet scalars which act as a spacetime Lorentz vector:

(42) ∆ := − 1
√
γ
∂α
√
αγαβ∂β = ∇α∂α, (X, Y ) :=

∫
d2σ
√
γ XµYµ.

Let’s expand the Xµ in an eigenbasis {(ψn, λn)} of ∆ on Σg, with λn ≥ 0 since ∆ is
positive definite. We will assume our target spacetime has critical dimension D = 26.
Separating out the zero mode ψ0, we find

(43) Xµ =
∑
n≥0

Cµ
nψn := Xµ

0 +
∑
n≥1

Cµ
nψn.

4This does not appear in the Jacobian, since it contributes
∫
D[δX̃] exp(−||δX̃||2) = 1.

5The ε variation here will be an off-diagonal “coupling” between the metric and field deformations.
This means it doesn’t contribute to the final Gaussian determinant, and we can ignore it! See [4] for
details.
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The Cµ
n parameterise the path integral. By orthonormality of the {ψn}, and performing

a Gaussian integral on the second last line, the DX path integral in (40) becomes∫
DX exp−

1
2T (X,∆X) =

∫ ∏
nµ

dCµn e
−T

2
λnC2

n =
1

ψ26
0

(∫
dX0

)26 ∏
n≥1

(
2π

Tλn

)26/2

∼ (det′∆)−13

ψ26
0

.

Here, we have thrown away a divergent constant, and det′ denotes the determinant
excluding the zero mode. Let A[γ] denote the area of the worldsheet, so that the zero
mode has normalised value ψ0 :=

√
A[γ]. Thus, (44) becomes∫

DX e−SP ∼
[

det′∆

A[γ]

]13

.(44)

3.4. Final result. We can finally assemble our results. Using (26), (37), (38), (40) and
(44), we can rewrite the loop amplitudes in (8) as

Zg =
g2−2g

s

vol(Gg)

∫
dnτ DεD[δω]JγJε

∫
DX̃ JX e−S

X
P

=
g2−2g

s

vol(MCG)vol(CKG)vol(Diff0)vol(Weyl)

∫
dnτ DεD[δω]JγJε

∫
DX e−S

X
P

=
g2−2g

s

vol(MCG)vol(CKG)

∫
Teich(Σg)

dnτ

[
det |φ, µ|2 det(Φ,Φ) det ′(∆+∆−)

det(φ, φ)

] [
det′∆

A[γ]

]13

,(45)

where we cancelled the volume of Weyl(Σg) by integrating over δω, and the volume of
Diff0(Σg) by integrating over ε.

We are left with a finite-dimensional integral over Teichmüller space. Dividing by
the volume of the mapping class group just yields the moduli space. For g ≥ 2, there
are no CKVs, so (45) simplifies to

Zg = g2−2g
s

∫
Mg

[
dnτ

det |φ, µ|2

det(φ, φ)

]
det ′(∆+∆−)

[
det′∆

A[γ]

]13

.

The first term in square brackets is a Kähler form on the moduli space, known as the
Weil-Petersson measure ωWP [3].6 It’s possible to show that the spectrum of ∆+ and
∆− agree [4], so we have the slightly tidier answer for g ≥ 2:

(46) Zg = g2−2g
s

∫
Mg

ωWP det ′(∆±)2

[
det′∆

A[γ]

]13

.

Physically, (46) tells us that in order for nothing to happen, string theory must probe
the symplectic structure of every compact Riemann surface Σg and sound out its har-
monics via ∆± and ∆. To paraphrase Mark Kac, the loop amplitude Zg hears the shape
of the Riemann surface Σg.

6Technically, we need to invoke the Uniformisation Theorem to first map Σg to a canonical constant-
curvature surface ΣUC

g [4]. In the same way the torus is obtained by quotienting the complex plane by
a lattice T 2 = C/Λ, higher genus constant-curvature spaces are obtained by quotienting the upper-half
plane by a subgroup Γg ⊂ SL(2,R), ΣUC

g = H/Γg.
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3.5. Extensions. We have merely dipped our toes into the deep waters of string per-
turbation theory. Even confining ourselves to closed bosonic strings, there are many
directions we can swim. A first step is to generalise (46) to include vertex insertions.
The order g ≥ 2 contribution to the scattering amplitude (6) is easily found [3]:

A(b)
g ({α}) = g2−2g

s

∫
Mg

ωWP det ′(∆±)2

[
det′∆

A[γ]

]13
〈∏

α

Vα

〉
X

,

where 〈·〉X denotes the path integral with respect to DX only.
Another question is whether we can write (46) explicitly. One approach is to eval-

uate the spectra of the Laplacians ∆,∆± using Ray-Singer analytic torsion [7]. It’s
also possible to use algebraic rather spectral invariants. Reference [2] proves that
(46) can be written Zg = g

χ(g)
s

∫
Mg
|µg|2, where µg is an object from algebraic geometry

called the Mumford form on Σg.
There is more than on way to skin a cat, or in this case, perform a path integral.

First, we can derive Jacobians using Faddeev-Popov ghosts, and the corresponding
BRST symmetry makes the physics of loop amplitudes clearer [5]. Second, we can use
combinatorial techniques to sew higher genus Riemann surfaces Σg out of spheres,
with associated patching for the moduli space and CFTs. This lets us prove unitarity
of string scattering [5]. It also makes the analogy to Feynman diagrams particularly
manifest, since cut-and-paste constructions are represented as graphs.

This concludes our brief tour of string amplitudes. We finish with a quote (a twist
on Kronecker attributed to Lipman Bers):

God, if She exists, created the natural numbers {0, 1, 2, . . .}, and com-
pact Riemann surfaces. The rest of mathematics is man-made.

String theory is tied in a deep way to these “God-given” objects. Perhaps one day,
viewed from the right perspective, it will seem just as natural.
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