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Overview

I The 2020 Nobel Prize in Physics was awarded to Andrea
Ghez and Reinhard Genzel and Sir Roger Penrose.

I Penrose showed mathematically that singularities
generally form inside black holes. We’ll understand why!



Newton’s second law

I Recall Newton’s second law, F = ma. A force (F )
accelerates an object (a), resisting with some inertia (m).

I Forces don’t depend on how we describe them. Right?
Smart Alec and Sharp Barb will guide us through.

I Alec sits on a merry-go-round, while Barb is stationary.

I Smart Alec: “Barb accelerates without force!”



Fictitious forces

I Sharp Barb: “You’re in an accelerating frame.”

I Alec: “How do I tell?” Barb: “Use an accelerometer!”

I Alec: “If I don’t have one?” Barb: “Look out for
fictitious forces proportional to my mass.”
If Barb’s mass mB increases, Ffic increases accordingly.



Gravity is fake

I A: “That can’t be right. Weight is proportional to mass,
W = mg . But gravity isn’t fictitious!”

I B: “Standing on the ground, you feel gravity’s pull, just
like the merry-go-round. Maybe it is fake!”

I A: “And the inertial frames, where forces are real?”
B: “The ones where you feel no gravity: freefall!”



The equivalence principle

I Albert Einstein had the same insight as Alec and Barb in
1911. He called it the equivalence principle, since it
explains the equivalence of inertial and gravitational mass.

I Put simply, baseballs and basketballs fall the same way.

I This is just like a stationary baseball and basketball
rotating the same way, viewed from a merry-go-round!



Gravity is curvature

I A: “Hang on a sec: things fall to the ground and orbit.
Gravitation happens! How can this be if gravity is fake?”

I B: “Gravity is fake but space is curved.”

I On the plane, parallel, straight lines stay parallel forever.

I Curvature occurs when straight lines start parallel but
change their mind. These lines are called geodesics: they
are locally straight. They look straight when you zoom in!



Straight lines in spacetime

I A: “I understand how curvature can bring straight lines
together. But what about stationary objects?”

I B: “Nothing stays still if you add a time coordinate!”

I We draw a plane with x and t axes. Stationary objects
are purple. Light rays are red, and border the light cone.

I In flat spacetime, parallel lines remain that way. In curved
spacetime, geodesics can change their mind.



Spacetime curvature

I Alec and Barb set up nearby labs, connected by a taut
string and with synchronized onboard clocks, time τ .

I The labs start at fixed distance d and free fall. With
string and clocks, they measure the acceleration a of d .

I The spacetime curvature R is defined by

a = −Rd .

In flat space, R = 0. Positive R means they get closer
together. Negative R means they drift apart.



General relativity

I A: “So we can measure curvature. But what causes it?”

I B: “Newton told us mass creates a gravitational force.
If that force is fake, then mass must create curvature.”

I Matter tells space how to curve.
Space tells matter how to move. (John Wheeler)

I Einstein’s field equations (1915) translate this into math.
We could learn more about these equations . . .



Schwarzschild’s surprise

I Instead, we’ll do something easier: earn a Nobel prize!

I In 1915, Karl Schwarzschild worked out how spherical
mass curves spacetime. You get orbits and so on.

I But for a very dense sphere, there are two surprises:
I there is a light-trapping region;
I there is a singularity, where spacetime breaks down.



A singular inconvenience

I For our purposes, a singularity occurs when you cannot
head into the future. There is literally nowhere to go!

I A: “Maybe singularities are just a bug in Schwarzschild’s
code. In a more general black hole, with less symmetry
and filled with matter, there may be no singularity.”

I B: “Einstein agreed — he didn’t like that his theory
predicted its own demise! But in 1965, Penrose showed
that trapping light leads inevitably to singularities. ”



A congruence of labs

I We start by considering a network of nearby labs , called
a congruence, spanning an area A.

I The area spanned can change with time. The expansion
is the fractional rate of change

θ =
1

A

∆A

∆τ
.



The focusing theorem

I The expansion itself can change, with some rate of
change we call bending, α = ∆θ/∆τ .

I The sign of α tells us if the labs converge or diverge.

I Einstein’s equations (with ordinary matter) imply that
gravity is attractive: labs in freefall converge. More
precisely, the focusing theorem states

α ≤ −θ
2

3
.



Caustics and benefits

I The focusing theorem has an important consequence.

I If θ is ever negative, the network collapses to zero area in
finite time. The labs collide! This is called a caustic.

I Idea: use the focusing theorem to show that |θ|
undergoes runaway growth, with θ = −∞ in finite time.
See the exercises for more details!



From labs to laser pointers

I Everything we’ve said so far about focusing holds for a
congruence of laser pulses, with two differences.

1. Clocks attached to light rays stop due to time dilation.

We calculate expansion θ and bending α with respect to
number of wavelengths, instead of onboard clock time τ .



Surface grids

2. Light rays have to move. If we fire a ball of laser pointers,
rays will intersect, however we orient them.

Instead, we choose a surface S (and side) to fire from.

I The focusing theorem holds for surface grids of lasers.
The pulses are called a null geodesic congruence.



Trapped null surfaces

I Let B be a region of space which traps light. Select a
closed surface T just inside B. There are two surface
grids on T : outward-directed and inward-directed.

I The area spanned by inward bound light rays shrinks. But
because B traps light, the outward bound rays shrink too!

I Such a T is called a trapped null surface (TNS).



Colliding lasers

I Light rays in both directions from T have θ < 0.

I The focusing theorem implies that caustics develop in a
finite number of wavelengths. Thus, every outward- or
inward-bound light ray leaving T collides with another.

I It turns out that these caustics indicate the presence of a
singularity. There is no future for T beyond them!



The blob at the end of time

I Let’s make sure we understand why the future ends. It’s
easier to see if we take a two-dimensional slice.

I Both black hole and closed trapped surface are two dots.

I We claim the future of T is the finite blob above.



The flashlight future

I A: “ Just because light rays intersect doesn’t mean there
is a problem. Consider two crossed flashlights!

I The flashlights don’t end time. Can’t you extend the light
rays from the blob, and get more future?”



Zig-zag light rays

I B: “Suppose we can. Now pick a point on one of the
extended rays. How can a light ray get there?”

I A: “Just follow the original ray.”

I B: “Right. But because we have extended through the
caustic, a zig-zag light ray path can also get there.”



A shortcut for rockets

I A: “There is no law against zig-zags.”

I B: “What about shortcuts? I can deform the zig-zag into
a path inside the blob. A fast rocket can also get there!

I In fact, the same argument shows a rocket can get to any
point on a ray extended beyond a caustic.”



The edge of the future

I B: “A light ray is quicker than a rocket. So the edge of
the future is always reached by light rays, not rockets.”

I A: “I get it! Points on any extended ray can be reached
by rockets, so they cannot be on the edge of T ’s future.”

I B: “Exactly. And since there are no other candidate light
rays to bound it, the future must end in the blob!”



Conclusion

I This proves the Penrose singularity theorem: a surface
where outgoing light rays shrink destroys the future.

I We know black holes exist (see the Nobel for Genzel and
Ghez!) and black holes create trapped null surfaces.

I Thus, general relativity predicts singularities inside!

Thanks for listening!


