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Problems

1. Focusing in one dimension. Let’s apply the focusing theorem to Alec and Barb’s labs,
when there is only a single spatial dimension. In this case, instead of area A we have the
distance d, and the fractional rate of change is

θ =
v

d
,

where v is the rate of change of the length of the string. Using calculus, it is possible to
show that

α =
ad− v2

d2
.

(a) From the focusing theorem for labs, deduce that

a ≤ 2v2

3d
.

(b) Now recall that we defined curvature R was defined by a = −Rd, where the labs are
initially paralell. Using the previous question, show that the focusing theorem for
labs implies R ≥ 0, i.e. the 2D universe is flat or positively curved.

2. Caustics in finite time. In this problem, we we will show that caustics develop in finite
time from negative expansion, assuming the focusing theorem. Although we will state
the problem in terms of τ , the time for clocks on board a lab, the same math holds when
we replace time with λ, the number of wavelengths of a laser pulse.

Figure 1: Splitting τ∗ = 6/|θ0| into a geometric series.

Suppose that a congruence has negative expansion θ0 = −|θ0| < 0. We will give a rough
argument that the area vanishes in time τ∗ = 6/|θ0|. Our trick will be to split τ∗ into a
geometric series:

τ∗ =
τ∗

2
+
τ∗

4
+
τ∗

8
+ · · · = τ1 + τ2 + τ3 + · · · ,

where we define τn = τ∗/2n.

(a) The focusing theorem states that α ≤ −θ2/3. Explain why setting these to be equal
gives an upper bound on the time until the caustic.
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(b) We will set α = −θ2/3 to find an upper bound on the time it takes to form a caustic.
We proceed in the time steps defined above. Argue that, approximately, after time
τ1 = τ∗/2 = 3/|θ0|, the expansion is

θ1 = 2θ0.

(c) Similarly, by computing a few examples (or any other method), explain why after n
time steps,

θn = 2nθ0.

(d) Argue that θ → −∞ in a finite time, and hence A = 0 at or before τ∗ = 6/|θ0|.
(e) Bonus. Using calculus, show that caustics occur at or before τ∗calc = 3/|θ0|.

3. Apparent vs event horizons. In th e talk, I defined a black hole region as one which
contains null trapped surfaces T . This is actually quite a strong notion of the black hole
region, called the apparent horizon because it’s “apparent”: you can tell when you’re
inside using a grid of laser pointers! More precisely, an apparent horizon B has the
property that any closed surface T strictly within it is a trapped null surface.

Figure 2: The black hole and event horizon.

But there is a sneakier notion of horizon. Suppose somebody notices they are falling into
a black hole and sends a distress signal saying “Help! I’m falling into a black hole!” We
will ignore whether or not we can save them: the question is, can someone far away from
the black hole receive the message at all? The (global) black hole H is the whole region
of spacetime from which you cannot even send a distress signal. The boundary of this
region is call the event horizon E .

(a) Give an informal argument that E is described by a null geodesic congruence, i.e. is
generated by laser pulses. Hint. You might want to consider a slice of E0 at some
fixed time, and the outward-directed surface grid.

(b) Explain why an apparent horizon B will always lie at or inside the event horizon E .

4. The area theorem. Our last problem will use the techniques we’ve developed to give a
rough proof of the famous area theorem, due to Stephen Hawking in 1971. It states that
black holes always get bigger. Let’s see how it goes!
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(a) In the last question, we showed that the event horizon of a black hole can be viewed
as a null congruence. It therefore has some expansion θ. If θ < 0, argue that the
black hole will collapse to a singularity in a finite number of wavelengths.

(b) If this singularity forms, it is naked, i.e. not clothed by a black hole horizon, since
the horizon itself has collapsed! The cosmic censorship hypothesis, conjectured by
Penrose in 1969, is that Nature forbids naked singularities. Assuming this conjec-
ture, show that θ ≥ 0 for event horizons.

(c) Conclude that the area of a black hole can never decrease.

In fact, there is nothing in our argument that restricts us to a single black hole, since
the event horizon could have different components. The same reasoning therefore shows
that the total area of any number of black holes will increase!

Hawking noted that this was rather odd. In physics, most quantities can either in-
crease or decrease; they do not track the flow of time. The famous exception is entropy,
the amount of disorder, or a little less mysteriously, the number of ways a system can
be, which increases as time goes on, at least for thermodynamic systems with many
particles. This suggests that the area of a black hole is connected to its entropy! This
observation lead to the remarkable discovery that black holes themselves obey all four
laws of thermodynamics, once suitable analogues to ordinary thermodynamic quantities
have been identified. Sadly, we must leave the topic of black hole thermodynamics for
another time!
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Solutions

1. (a) The focusing theorem states that α ≤ −θ2/3, or

α =
ad− v2

d2
≤ − v2

3d2
=⇒ ad ≤ 2v2

3
.

(b) Since the labs are parallel, we set v = 0. The previous question shows ad ≤ 0, and
hence −Rd2 ≤ 0. Since d2 > 0 is strictly positive, we have R ≥ 0.

2. (a) The more negative α is, the more it bends the geodesics towards each other, and
hence the quicker the caustic arrives. Setting α = −θ2/3 therefore gives the slowest
approach to a caustic.

(b) By definition,

α =
∆θ

∆τ
=⇒ θ1 = θ0 + α∆τ.

After the first time step, this gives

θ1 = θ0 + ατ1 = θ0 −
θ20
3
· 3

|θ0|
= 2θ0.

(c) Let’s do another example. We can do the same thing as the last question to get

θ2 = θ1 + ατ2 = θ1 −
θ21
3
· 3

2θ0
= θ1 −

θ21
3
· 3

θ1
= 2θ1.

Looks like a pattern! It’s easy to see that the pattern continues, simply doubling θ

at each point.

Bonus. If you like math, there is a proof by induction. Suppose that θn = 2nθ0. Then

θn+1 = θn + ατn+1 = θn −
θ2n
3
· 6

2n+1|θ0|
= θn +

θ2n
3
· 3

θn
= 2θn.

(d) We’re taking something negative and doubling it an infinite number of times, so we
will certainly get −∞. This happens in a finite time τ∗ since we have obtained our
steps by splitting that up! Finally, the only way

θ =
1

A

∆A

∆τ

can blow up is if A = 0.

(e) This requires some knowledge of differentiation. Really, α = dθ/dτ is the derivative
of θ. If we set α = −θ2/3, we have a slightly confusing looking equation to solve:

dθ

dτ
= −θ

2

3
.

Let’s invert both sides:
dτ

dθ
= − 3

θ2
.
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Now we view τ as a function of θ, and ask what has the derivative −3/θ2. If you have
a bit of calculus under your belt, you can antidifferentiate immediately to find

τ =
3

θ
+ c =

3

θ
− 3

θ0
,

where we determine the constant c from the fact that θ = θ0 at τ = 0. Now, caustics
occur when θ = −∞. We will call the corresponding time τ = τ∗calc. In this case, the
first term vanishes, and we are left with

τ∗calc = − 3

θ0
=

3

|θ0|
.

3. (a) Let’s follow the hint and consider a slice E0. If we set up a grid of lasers on the
surface and shoot outward pulses, what will happen? Well, venture a little ways
outside the horizon and the messages will reach the region very distant from the
black hole. Venture a little inside and they will be trapped inside. So right on the
event horizon itself, the light gets stuck! It simply hovers there. This means that
the horizon E itself is threaded by this outgoing null congruence.

Figure 3: The outgoing light rays from E0 run along the horizon itself.

(b) If T is a trapped null surface, then the network of outgoing light rays gets smaller.
There is no way it can reach distant regions outside the black hole! By definition,
any surface within an apparent horizon B is a trapped null surface. These trapped
surfaces can get arbitrarily close to the apparent horizon, suggesting that we cannot
send a message to the distant region from B itself. Otherwise, we could shrink the
surface by a teensy weensy bit, to get B′, and send a message to the distant region
— but this is impossible since B′ is trapped!

4. (a) From the last problem, we know that the event horizon E can be viewed as the
outgoing lasers from a surface grid. As discussed in the talk, these obey the focusing
theorem, and if θ < 0 at any point, then by the same reasoning, the horizon itself
will develop caustics and hence a singularity after a finite number of wavelengths.

(b) There is no problem with the horizon collapsing, except that the singularity would
be there for everyone to see. So, if the cosmic censorship conjecture is true, this is
not possible, and we must have θ ≥ 0 at all times on the horizon.

(c) Since θ is the (fractional) change in area, θ ≥ 0 means the area can never decrease!
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