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Prerequisites: basic probability, calculus, summation notation. Asterisks denote optional ques-

tions requiring more work or background knowledge.

Escherichia coli (E. coli) is a tiny, rod-shaped bacterium which can build a propeller
and motor around in search of nutrients. We will follow a single E. coli, Colin, on his

Figure 1: E. coli, magnified 10000 times under an electron microscope. Eric Erbe, USDA.

random foray around a one-dimensional environment. Let’s model the environment as
a one-dimensional lattice, with sites labelled by integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Since space is discrete, it makes sense to represent time using discrete steps t ∈ N =

{0, 1, 2, 3, . . .}. Colin and the lattice are pictured below.
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Figure 2: Colin randomly searching a lattice for nutrients. Nutrients are uniformly distributed.

Let x(t) denote Colin’s position at time t. If Colin wanders randomly, then at each
time step t, the lattice position x(t) is a random variable. We’ll assume that Colin
moves left or right with equal probability, a process called a symmetric random walk.
This corresponds to a uniform nutrient density, where there is no preferred direction
to explore. We’ll also start Colin off at the origin with x(0) = 0.1

1To be more precise, the probability of starting at the origin is unity, Pr(x(0) = 0) = 1.
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It’s useful to break the walk down into independent increments in position, or
jumps, X(t) = ±1, where X(t) is the jump in position between times t − 1 and t.
For a symmetric walk, X(t) = X is a random variable taking values ±1 with equal
probability:

Pr
(
X = ±1) = 1

2
. (1)

In particular, for different times t 6= t′, X(t) and X(t′) are independent random vari-
ables (IRVs) with the same probability distribution. We can express the jump in posi-
tion as the difference between the current and previous position, X(T ) = x(T )−x(T −
1). Alternatively, we can express Colin’s position at time T as a sum of T jumps:

x(T ) = X(1) +X(2) + · · ·+X(T ) =
T∑
t=1

X(t).

Readers at home can simulate Colin’s walk by flipping a coin at each time step! Heads
is a step to the right, and tails a step to the left.

We’ll now explore Colin’s motion using three different approaches: central ten-
dencies like mean and spread (Part A); the exact probability distribution (Part B); and
large time behaviour (Part C).

Part A. We start with central tendencies. For any random variable Y (e.g. the jump X
or the position x), the expectation of a function f(Y ) is the average value the function
f takes over many realisations of Y . We can calculate this as a sum, weighted by
probability:

〈f(Y )〉 :=
∑
y

Pr(Y = y)f(y), (2)

where y ranges over the values that Y can take. Simple examples are the mean 〈Y 〉,
and variance defined by

var(Y ) := 〈(Y − 〈Y 〉)2〉 = 〈Y 2〉 − 〈Y 〉2. (3)

The square root of the variance is the standard deviation σ(Y ) :=
√

var(Y ). Al-
though we sometimes call the variance the “spread” of Y , the standard deviation is
a better measure of spread, since it has the same units as Y , while the variance is
measured in those units squared. For instance, if Y represents the number of bagels
cooked at Barb’s Bagelry each day, the mean and standard deviation are measured in
bagels, but the variance in bagels squared.

We can view the angle brackets 〈·〉 as an operator, or function of functions, which
eats a function of Y and spits out the weighted sum:

〈·〉 : {functions f of Y } → {weighted sums of f}.
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It has the useful property of being linear:

〈α1f1(Y ) + α2f2(Y )〉 =
∑
y

Pr(Y = y)

[
α1f1(Y ) + α2f2(Y )

]
= α1

∑
y

Pr(Y = y)f1(y) + α2

∑
y

Pr(Y = y)f2(y)

= α1〈f1(Y )〉+ α2〈f2(Y )〉.

We can extend this to arbitrary linear combinations:〈
n∑

i=1

αifi(Y )

〉
=

n∑
i=1

αi 〈fi(Y )〉 . (4)

In the next few exercises, you will apply these tools to Colin’s walk.

(a) Vanishing mean. Show that 〈X〉 = 0. By linearity, conclude that 〈x(t)〉 = 0 for any
t. On average, Colin doesn’t move anywhere!

(b) Expectations of IRVs factorises. Random variables Y and Z are independent if
the joint probability factorises:

Pr(Y = y, Z = z) = Pr(Y = y) · Pr(Z = z).

Argue that, for independent variables, the expectation also factorises, i.e. for
any functions f(Y ), g(Z),

〈f(Y )g(Z)〉 = 〈f(Y )〉〈g(Z)〉.

(c) Variance of IRVs is additive. Assuming that Y1, . . . , Yn are independent, use (b) to
prove Bienaymé’s formula,

var

(
n∑

i=1

Yi

)
=

n∑
i=1

var (Yi) . (5)

In words, variance is additive for independent random variables. This is the
advantage of talking about variance, rather than standard deviation. But don’t
forget Barb’s Bagelry!

(d) Variance equals time. Show that the variance of the jump is 1:

var(X) = 〈X2〉 = 1.

Deduce as a result that
var[x(t)] = t.
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Figure 3: A uniform gradient in nutrients leads to a biased walk, since Colin tends to move
towards high nutrient concentration.

(e) Biased 1D walk. Repeat the analysis for a biased walk, where

Pr(X = +1) = p, Pr(X = −1) = 1− p = q. (6)

This corresponds to a uniform gradient in the nutrient density (see Figure 3).
You should find that

〈x(t)〉 = (p− q)t, var[x(t)] = t[1− (p− q)2]. (7)

It’s almost like the mean of a biased walk moves with velocity p − q. Bias also
shrinks the jump variance by (p− q)2.

Part B. So far, we only have only looked at coarse measures of tendency. A more
fine-grained measure is the probability distribution

f(x, t) := Pr(x(t) = x). (8)

This is the exact probability that Colin occupies a specific site x at time t.2

(a) Left-right steps. Suppose that after t steps, Colin makes ` steps to the left and r

steps to the right. Argue that

r =
1

2
(t+ x), ` =

1

2
(t− x). (9)

(b) Counting paths. Show that, if Colin makes r right steps and ` left steps in time t,
the number of ways C(x, t) for him to arrive at his site is

C(x, t) =

(
`+ r

`

)
=

(
`+ r

r

)
=

t!(
1
2
(t+ x)!

) (
1
2
(t− x)!

) . (10)

Hint : Recall that
(
n
k

)
= n!/k!(n− k)! is the number of ways of choosing k objects

from a set of n, without regard to order.

2Note that we are using x without any time-dependence to denote a fixed lattice position, in contrast
to the random variable x(t).
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Figure 4: Three different paths (red, blue, green) from x = 0 to x = 1, consisting of one step
to the left and two to the right.

(c) Probability distribution. Argue that the probability Colin occupies position x at
time t is

f(x, t) = 2−tC(x, t). (11)

By convention, we set C(x, t) = 0 if x+ t is odd or t > x.

(d) Biased walk distribution. Show that for the biased walk of Part A, the probability
distribution becomes

fp(x, t) = prq`C(x, t). (12)

Here, r and ` can be expressed in terms of x and t using the dictionary in (a).

(e) Book-keeping.* Check that for fixed t, the probabilities fp(x, t) for x ∈ Z add up
to 1. Hint : Use the binomial expansion,

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk. (13)

Part C. What happens when the number of steps t becomes very large? The position
x(t) is a sum of many copies of the jump variable X, and we can invoke the Central
Limit Theorem (CLT). The CLT is a fundamental result in probability and statistics. It
states that a sum of independent, identically distributed random variables (IIDs) can
be approximated by a Gaussian distribution. We won’t prove it; our more modest goal
will be to state it precisely enough to use for the random walk.

Suppose Y is a random variable with mean µ and variance σ2. Let SN denote the
average of N independent copies of Y , and fN(y) its probability distribution:

SN :=
1

N

N∑
i=1

Yi, fN(y) := Pr(SN = y). (14)
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The normal distribution with mean µ and variance σ2 has distribution

f(x|µ, σ2) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
. (15)

Then the CLT states that, as N →∞, SN converges to a normal distribution with mean
µ and variance σ2/N :

lim
N→∞

fN(x) = f(x|µ, σ2N−1). (16)

This explains why so many things in the real world are normally distributed: they
are the result of adding together many independent, similarly distributed random
variables.

(a) Large random walks are Gaussian (CLT). Use the CLT to show that, for a large
number of steps t� 1, the probability distribution for the symmetric walk takes
the Gaussian form

f(x, t) ≈ 1√
2πt

exp

[
−x

2

2t

]
. (17)

In other words, for very large t, we can approximate Colin’s position using a
normal distribution centred at the origin. Hint : Consider tSt = x(t) in the CLT.

f
large t

f f
continuum

limit

Figure 5: In the limit of a large number of steps, the probability distribution (at fixed t) be-
comes approximately Gaussian.

(b) Large random walks are Gaussian (Stirling).* You can also derive the normal
distribution directly from the exact probability distribution (11). This requires
Stirling’s formula, another large N result for approximating factorials:

N ! ≈ NNe−N
√
2πN. (18)

Assuming that both ` and r are large, use Stirling’s formula to rederive (17).

(c) Higher dimensional random walk.* Imagine that Colin’s counterpart, Colleen,
randomly moves about on a d-dimensional “hypercubic” lattice

Zd = {k = (k1, k2, . . . , kd) | k1, k2, . . . , kd ∈ Z}.
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At each time step, Colleen randomly chooses one of the d axes to move along,
then jumps back or forth on unit in that direction with equal probability. Argue
that, for large t, the probability distribution takes the form

f (D)(k, t) ≈ 1

(2πtd−1)d/2
exp

[
−d|k|

2

2t

]
. (19)

Hint : Think of Colleen’s d-dimensional walk as d one-dimensional walks.

(d) Gaussian spread in higher dimensions.* Argue that at time t, Colleen is on aver-
age a distance

√
t from the origin, whatever the dimension d! The moral is that

the natural measure of Gaussian variance in d dimensions is σ2/d rather than σ2.
Hint : Consider the average variance in each dimension and add them together.

(e) Scaling the variance. We can add many steps of unit size to get a normal distri-
bution. But imagine zooming out so that the size of steps xstep and time between
steps tstep both become small. If t continues to denote total elapsed time, the
number of steps in that time will be t/tstep. Show that the variance of X and x(t)
become

var(X) = x2step, var[x(t)] = t

(
x2step
tstep

)
. (20)

(f) Scaling the distribution. Let’s apply our rescaling argument to the large random
walk. Fix the ratio

σ2 =
x2step
tstep

, (21)

so that the variance is tσ2. In this limit, derive the approximate distribution

f(x, t) ≈ 1√
2πσ2t

exp

[
− x2

2σ2t

]
. (22)

As long as we keep the ratio σ2 = x2step/tstep fixed, the distribution (22) is well-defined,
even as we make xstep and tstep much smaller than our original step size. In particular,
we could make them small enough to regard the probability distribution as continuous
in time and space, rather than being defined on a lattice. This is sometimes called the
continuum limit. In this limit, something cool happens: the function f(x, t) obeys the
diffusion equation.3 You can check this in the following (optional) questions.

(g) Initial condition.* Show that as t gets small, the probability distribution (22)
gets infinitely high and thin. As we head towards t → 0, Colin is increasingly
likely to be found at the origin. The continuous distribution is trying valiantly to
reproduce our initial condition x(0) = 0!

3In fact, since it applies to a probability distribution rather than a physical quantity, this is really the
Fokker-Planck equation. But let’s not split hairs.
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(h) Random walks diffuse.* Show that the continuous probability distribution (22)
obeys the partial differential equation

∂f(x, t)

∂t
= σ

∂2f(x, t)

∂x2
. (23)

This is called the diffusion equation. It describes a sharp spike (the initial condi-
tion from question (a)) smoothed into a spreading Gaussian as time evolves.

increasing t

Figure 6: An initial spike smoothed by diffusion in the continuum limit of a random walk.

Many physical phenomena obey the diffusion equation (23), e.g. heat in a metal bar,
loose atoms jiggling around a solid, or a drop of dye spreading in a glass of water. This
means that if we have a whole swarm of (independently foraging) bacteria, they will
spread like the drop of dye as they search for food. We can modify the diffusion equa-
tion to incorporate bias, and even chemotaxis, the tendency for bacteria to respond to
local changes in nutrient concentration. Sadly, this is beyond our scope! But hopefully
you see that, even in a simple one-dimensional model, there is a ballet in the random
motion of hungry bacteria.
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