UBC Virtual Physics Circle A Hacker's Guide to Random Walks

David Wakeham

June 11, 2020

Overview

► Today, we're going to learn about random walks.

- ► This is the motion executed by a drunkard! But also polymers, photons in the sun, atoms...
- ► We will take an elementary approach.

All the math!

Random walks: steps

► A random walk consists of random steps *S*. This could be in one or more dimensions.

$$S = -1 \qquad S = +1$$

► The sum of *N* steps is

$$T_N = S_1 + \cdots + S_N.$$

We would like to understand some aspects of T_N .

Basic probability: averages

- We're going to need a few basic facts about probability.
- First of all, suppose X is a random number (or function of random numbers). The average $\langle X \rangle$ is

$$\langle X \rangle = \frac{\text{sum of results for } X \text{ over many experiments}}{\text{number of experiments}}.$$

▶ We won't need probability, just averages! In pictures:

Basic probability: sum rule

▶ **Sum rule.** If X and Y are random, then

$$\langle X + Y \rangle = \frac{\text{sum of } (X + Y)}{\text{number of experiments}}$$

$$= \frac{(\text{sum of } X) + (\text{sum of } Y)}{\text{number of experiments}} = \langle X \rangle + \langle Y \rangle.$$

In pictures:
$$\langle \mathbf{X} + \mathbf{Y} \rangle = \frac{\mathbf{X} + \mathbf{Y} + \mathbf{X} + \mathbf{Y}}{\mathbf{X} + \mathbf{Y} + \mathbf{X} + \mathbf{Y}}$$

$$= \left(\frac{\mathbf{X} + \mathbf{X} + \mathbf{X}}{\mathbf{X}} \right) + \left(\frac{\mathbf{Y} + \mathbf{Y} + \mathbf{Y}}{\mathbf{X} + \mathbf{Y}} \right)$$

Random walks: unbias

- ▶ **Unbiased.** We say the steps are unbiased if $\langle S \rangle = 0$.
- ▶ It follows from the sum rule that *T_N* is unbiased:

$$\langle T_N \rangle = \langle S_1 \rangle + \cdots + \langle S_N \rangle = 0.$$

Random walks go nowhere on average! Boring.

Let a drunkard move back or forward a step by tossing a fair coin S. In N tosses, we get $\sim N/2$ tails andheads, so

$$\langle S \rangle = \frac{N/2 - N/2}{bcN} = 0.$$

On average, the drunkard remains where they are!

Basic probability: uncorrelation

▶ **Uncorrelation.** We say that *X* and *Y* are uncorrelated if

$$\langle XY \rangle = \langle X \rangle \langle Y \rangle.$$

If they are unbiased, then uncorrelation means $\langle XY \rangle = 0$.

▶ Unbiased random vectors \vec{S}, \vec{S}' are uncorrelated if

$$\langle \vec{S} \cdot \vec{S}' \rangle = 0,$$

where $\vec{S} \cdot \vec{S}' = 0$ if they are perpendicular.

Random walks: deviation

► Consider a walk of *N* unbiased, uncorrelated steps:

$$\vec{T}_N = \vec{S}_1 + \vec{S}_2 + \cdots + \vec{S}_N.$$

We know that the average $\langle \vec{T}_N \rangle = 0$ is boring.

- A better measure is the standard deviation, $\sqrt{\langle \vec{T}_N^2 \rangle}$, measuring the size of the region covered by the walk.
- Note that $(x + y)^2 = x^2 + y^2 + 2xy$ generalizes to

$$ec{\mathcal{T}}_{N}^{2} = (ec{S}_{1} + \dots + ec{S}_{N})^{2} \ = ec{S}_{1}^{2} + \dots + ec{S}_{N}^{2} + 2(ec{S}_{1} \cdot ec{S}_{2} + \dots + ec{S}_{N-1} \cdot ec{S}_{N}),$$

Random walks: finale!

- Now we just take averages of \vec{T}_N^2 using the sum rule.
- ▶ If steps are unbiased/uncorrelated, the cross-terms vanish:

$$\langle \vec{T}_N^2 \rangle = \langle \vec{S}_1^2 \rangle + \cdots + \langle \vec{S}_N^2 \rangle.$$

▶ If each step length is ℓ , then $\langle \vec{S}_1^2 \rangle = \ell^2$. Then

$$d = \sqrt{\langle \vec{T}_N^2 \rangle} = \sqrt{\ell^2 + \dots + \ell^2 \rangle} = \sqrt{N}\ell.$$

▶ This is our big result: a random walk tends to spread a distance $\propto \sqrt{N}$, where N is the number of steps.

Applications

Polymers: intro

- Our first application is to long molecules called polymers.
- ▶ A polymer is a chain of approximately straight links of length ℓ . These links can form a random walk in space.

► The most famous polymer is DNA. It is not usually a random walk — unless it spills out of the nucleus!

Polymers: E. Coli genome

Exercise 1. Below is the spilled DNA of an E. colibacterium. A rigid chunk has length $\ell=48$ nm, corresponding to ~ 140 base pairs (bp).

► Estimate the total length *L* of the genome in bp.

Polymers: E. Coli genome

▶ **Solution.** From the scale, we have $d \sim 5 \, \mu \text{m}$. Using $d \sim \sqrt{n} \ell$, the total number of links is

$$n \sim \frac{d^2}{\ell^2} = \left(\frac{5 \times 10^{-6}}{48 \times 10^{-9}}\right)^2 \approx 11 \times 10^3.$$

Multiplying by the number of base pairs in a chunk gives

$$L = (11 \times 10^3)(140 \text{ bp}) \sim 1.5 \text{ Mbp}.$$

▶ Biologists tell us the correct answer is L = 4.9 Mbp. We're within an order of magnitude! (Physics dance.)

Collisions: intro

- ▶ Collisions are another rich source of random walks.
- ▶ In many situations, particles move in straight lines until they collide! This resets their direction randomly.

▶ This looks like a random walk, with step length set by something called the mean free path (mfp) λ .

Collisions: cylinders

- ► To find the mfp, we'll use collision cylinders. This is the volume a particle sweeps out as it moves.
- ▶ A useful tweak is to choose a volume such collisions occur when the centre of another particle lies inside.

Exercise 2. A sphere of radius R collides with spheres of radius r. Show the collision cylinder has radius R + r.

Collisions: density and mfp

- ▶ The cylinder scattering cross-section is σ . Move a distance d, and the collision cylinder has volume $V = \sigma d$.
- ▶ If there are *n* particles per unit volume, then

$$Vn = \sigma dn = 1 \implies d = \frac{1}{\sigma n}.$$

You expect a collision after a distance $d=1/\sigma n$. But this is just the mfp! So $\lambda=1/\sigma n$.

Asteroid belt

- Our first application is asteroids!
- ► The asteroid belt is ring between Jupiter and Mars, 2.2 to 3.2 astronomical units (AU) from the sun, where

$$1 \text{ AU} = 1.5 \times 10^8 \text{ km}.$$

We never program space probes to avoid asteroids. Why?

Asteroid belt

- ▶ The belt has 25M asteroids, average diameter 10 km.
- **Exercise 3.** (a) What is the density of asteroids, *n*?
- ▶ (b) Space probes are much smaller than asteroids. Explain why the collision "strip" has width $\sigma \approx 10$ km.

► (c) Find the mean free path of a space probe. Conclude it almost never collides with asteroids!

Asteroid belt

▶ **Solution.** (a) Density is total number divided by area:

$$n = rac{25 imes 10^6}{\pi (3.2^2 - 2.2^2)(1.5 imes 10^8 \text{ km})^2} pprox 7 imes 10^{-11} \text{ km}^{-2}.$$

- (b) Approximate the space probe as a point. It collides with an asteroid when it's less than an asteroid radius away! So the collision width $\sigma \approx 10$ km.
- ▶ (c) Using our formula for mean free path,

$$\lambda = rac{1}{\lambda \sigma} pprox rac{1}{10 (7 imes 10^{-11})} \; ext{km} pprox 10 \; ext{AU}.$$

This is much bigger than the width of the asteroid belt!

- ► Another application is the age-old (Vancouver-relevant) question: should you walk or run in the rain?
- We ignored the motion of the asteroids...
- ▶ But rain is clearly moving! We deal with this by doing everything in the reference frame of the rain.

- ► Suppose shelter is some distance *d* away. In the rain frame, it moves up at the same speed as you.
- ▶ We (naturally) model people as spheres of radius *R*.

▶ We should minimise the length of our collision cylinder.

► Exercise 4. (a) If you run at speed *u*, raindrops have density *n* and speed *v*, argue you collide with *k* drops for

$$k = nd\sigma \sqrt{1 + (v/u)^2} = nd\pi R^2 \sqrt{1 + (v/u)^2}.$$

This decreases as we make u bigger!

- ▶ (b) If wind blows the rain towards the shelter, argue there is a finite optimal speed to run.
- ▶ Bonus. If rain blows towards shelter with horizontal speed u' and falls at speed v, show the optimal speed is v^2/u' .

Solutions. (a) It takes time t = d/u to reach shelter. In that time, you travel up tv = vd/u in the rain frame. So

total distance =
$$\sqrt{d^2 + (vd/u)^2} = d\sqrt{1 + (v/u)^2}$$
.

We then multiply by cross-section $\sigma = \pi R^2$ and density n.

▶ (b) The optimal collision cylinder is shown right:

This corresponds to a finite horizontal speed.

A walk in the sun

- Let's finish by adding random walks back into the mix.
- ► In the sun, photons are constantly colliding with hydrogen nuclei. The cross-section and density of nuclei are

$$\sigma = 6 \times 10^{-29} \text{ m}^2, \quad n = 5 \times 10^{32} \text{ m}^{-3}.$$

Exercise 5. What is the mean free path of a photon?

▶ **Solution.** From $\lambda = 1/\sigma n$, we have

$$\lambda = [(6 \times 10^{-29})(5 \times 10^{32})]^{-1} \text{ m} \approx 3 \times 10^{-5} \text{ m}.$$

A walk in the sun

- ▶ The sun has a radius of $R_{\odot} = 7 \times 10^8$ m and photons travel at $c = 3 \times 10^8$ m/s between collisions.
- ► Exercise 6. If a photon starts in the centre, roughly how long does it take to random walk out of the sun?

▶ Remember that spread obeys $d \sim \sqrt{N}\lambda$.

A walk in the sun

▶ **Solution.** First, we relate time *t* to number of steps *N*:

$$c = rac{ ext{total length of path}}{t} = rac{ extit{N}\lambda}{t} \quad \Longrightarrow \quad extit{N} = rac{ct}{\lambda}.$$

If the photon spreads out a distance $d \sim R_{\odot}$, our law of random walks states $R_{\odot} \sim \sqrt{N}\lambda$. Hence

$$\begin{split} N &= \frac{ct}{\lambda} \sim \frac{R_{\odot}^2}{\lambda^2} \\ \Longrightarrow \quad t \sim \frac{R_{\odot}^2}{c\lambda} &= \frac{(7 \times 10^8 \text{ m})^2}{(3 \times 10^8 \text{ m/s})(3 \times 10^{-5} \text{ m})} \\ &= 5.4 \times 10^{13} \text{ s.} \end{split}$$

This is about 2 million years!

Questions?

Next time: Einstein's atomic escapades!