
A Co-Boundary Proposal1

David Wakeham

The AdS/CFT correspondence [1] is the statement that some quantum field theories

secretly encode theories of quantum gravity. In this thesis, we will use the correspondence

to peer inside black holes and see how they evaporate.

1 Background

This introductory section recalls some basic facts about AdS/CFT, black holes, and entan-

glement. AdS/CFT tells us that d-dimensional conformal field theories (CFTd) are dual to

quantum gravity in spacetimes which are asymptotically saddle-like, i.e. which asymptot-

ically approach anti-de Sitter space in one dimension higher (AdSd+1), as in Fig. 1 (left).

This is a duality of Hilbert spaces: states (including mixed states) in the CFT correspond

to states in the Hilbert space of quantum gravity on AdS. In principle, AdS/CFT furnishes

a non-perturbative definition of quantum gravity, for arbitrary states and CFTs. We fo-

cus, however, on large-N CFTs,2 dual to classical gravity, and states whose bulk duals are

described by perturbative quantum field theory on a curved background. We have to learn

to walk before we can run.

Figure 1. Left. The AdS/CFT correspondence on a cylinder. The exterior is the CFT, the interior

is AdS. Right. An AdS-Schwarzschild black hole, dual to a thermal state.

Walk or run, we will eventually collide with black holes. Bardeen, Carter and Hawking

[2] discovered that black holes obey laws analogous to those of classical thermodynamics.

In AdS/CFT, this is simply because black holes are dual to thermal states of the CFT

(Fig. 1, right). More precisely, consider the canonical ensemble at inverse temperature

β = 1/kBT , defined by the density matrix ρβ := Z[β]−1e−βĤ . Above the Hawking-Page

1Explanatory note. Here, the “co-boundaries” refer to AdS/BCFT, to be explained below, and the pun

is on the “no-boundary proposal”.
2Morally, N is the number of local degrees of freedom in the CFT. Immorally, it is some parameter

labelling a family of theories such that correlators factorize to leading order in N .
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transition temperature [3], the dual geometry is the exterior of an AdS-Schwarzschild black

hole at temperature β [4].

Although the exterior is fixed and classical, the interior remains mysterious. This is

easily explained. The thermal state is just the canonical probability distribution pE ∝ e−βE

over all eigenstates |E〉, peaking around some saddle-point energy E(β). There will be

many eigenstates around this energy, with dramatically different interior geometries, or

no classically describable interior at all. It may seem odd that these non-classical states

around E(β) do not spoil the exterior geometry. This is related to the famous Eigenstate

Thermalization Hypothesis (ETH) [5, 6], which conjectures that in chaotic systems, high

energy states around E(β) give the same answers to simple questions, with differences

suppressed by system size. Evidently, simple questions live in the exterior.

Since the mixedness of the canonical ensemble seems to obscure the interior geometry,

purifying ρβ will perhaps reveal it. The simplest method of purification is the thermofield

double (TFD), introduced by Israel [7]. Let CFT1 denote our original CFT, and CFT2 a

second copy of the same system. The TFD is the thermally entangled pure state

|TFD(β)〉 :=
1

Z[β]−1/2

∑
E

e−βH/2|E1〉|E2〉 , (1.1)

where |Ei〉 denotes energy eigenstates of system CFTi. If we partially trace out CFT2,

we recover the thermal state, ρβ = Tr2|TFD(β)〉〈TFD(β)|, which describes the AdS-

Schwarzschild exterior. Of course, the same statement is true if we trace out CFT1, so

the bulk should include two AdS-Schwarzschild exteriors, asymptotic to the two CFTs.

The simplest geometry with two black hole exteriors is a wormhole, i.e. the maximally

extended AdS-Schwarzschild solution. Maldacena gave a formal argument for this identifi-

cation in [8] (Fig. 2, left). In some mysterious fashion, entanglement seems to build the

spacetime of the interior [9].

Figure 2. Left. The wormhole dual to the TFD state, with sphere Sd−1 suppressed. Right. The

embedding geometry of the dotted timeslice, with the sphere schematically shown as a circle.

According to the Bekenstein-Hawking law [10, 11], the entropy of the black hole should

be identified with its horizon area Ahor according to S = Ahor/4G, where G is Newton’s

constant. But in the wormhole geometry, the horizon is simply the area of the “throat”

joining the two exterior regions, i.e. the minimal surface between them (Fig. 2, right).

Microscopically, the thermal entropy of ρβ is equal to the entanglement entropy between the

two CFTs, S[CFT2] := −Tr[ρβ log ρβ]. The entanglement entropy is therefore computed

by the area of a bulk minimal surface. This observation is dramatically generalized by the
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Ryu-Takayanagi (RT) formula [12, 13], depicted in Fig. 3 (left). This proposes that, for

any subregion A of a CFT in state |Ψ〉,3 the entanglement entropy of the reduced density

ρA := TrĀ|Ψ〉〈Ψ| is computed by the bulk minimal surface XA anchored at A, with

S[A] =
A[XA]

4G
+O(G0) . (1.2)

Bekenstein-Hawking is the special case where the “subregion” is an entire CFT!

Figure 3. Left. The RT formula for a green boundary region A. The minimal surface X is fuschia,

and the entanglement wedge ΞA mauve. Right. An RT surface probing behind the horizon.

The TFD is an entangled state of two CFTs with a known classical interior. Perhaps,

via the RT formula (1.2), we can use entanglement to look inside a single-sided black hole,

dual to a pure state on a single CFT (Fig. 3, right). The idea would be to identify a

high-energy state |E〉 with some interior geometry, then find a boundary region A whose

minimal surface XA ventures inside the horizon. If we could find such a state and minimal

surface, we would indeed be granted access to behind-the-horizon physics, since AdS/CFT

lore [15, 16] tells us that the density matrix ρA encodes physics in the entanglement wedge

ΞA, the region4 between A and XA. Sadly, these efforts are doomed: the horizon is an

impassable barrier to extremal surfaces anchored on the boundary [17]. Another strategy

is needed.

2 Boundary state black holes

Waste not, want not. The TFD (1.1) has a perfectly good interior geometry, and we can

use it to make a one-sided geometry fit for purpose. The first step is to transform (1.1)

into a state of CFT1, our candidate single-sided black hole. This is most easily achieved

by projecting CFT2 onto a specific state |B2〉:

〈B2|TFD(β)〉 = 〈B2|e−βH/2|EPR〉 =: |B1(β)〉 , (2.1)

3Of course, the state should be semiclassical so that an area can be computed. The original RT formula

applies only to static geometries. Hubeny, Rangamani and Takanagi generalized (1.2) to time-dependent

geometries, in which XA is a minimal extremal surface instead of a minimal surface simpliciter [14].
4Technically, its bulk domain of dependence.
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where |EPR〉 :=
∑

E |E1〉|E2〉 is the (non-normalizable) analogue of the EPR state. More

importantly, it is Choi–Jamio lkowski dual to the identity map [18].5 Thus, correlators can

equivalently be computed in the state e−βH/2|B2〉:

〈B1(β)|O1 · · · On|B1(β)〉 = 〈B2|e−βH/2O1 · · · One−βH/2|B2〉 , (2.2)

as demonstrated graphically in Fig. 4. This is precisely the imaginary time formalism

used in quantum quenches [19]. When the |B2〉 is a conformally invariant6 boundary state

[21], then (2.2) thermalizes at inverse temperature 2β, in the sense that the correlators give

canonically thermal answers [22].

Figure 4. Left. A cartoon of the thermofield double state. Middle. Projecting the TFD onto the

boundary state |B(β)〉. Right. Computing correlators in the boundary state.

It seems that |B(β)〉 describes a black hole at temperature 2β, with boundary |B〉 at

imaginary time τ = −β/2.7 This by itself does not guarantee a classical interior geometry,

but the natural appearance of boundary states is fortuitous. A CFT with boundary and

conformally invariant boundary conditions is called a BCFT. The AdS/BCFT dictionary

[24, 25] proposes that BCFTs are dual to AdS space cut off by a codimension-1 surface

called a brane. The position of the brane can be determined from boundary data by

judiciously modifying the RT formula (1.2). For instance, in a 1 + 1-dimensional BCFT on

{(x, t) ∈ R2 : x ≥ 0}, the ground state entanglement of the interval A := [0, L] is given by

SA =
c

6
log

(
2L

ε

)
+ gB , (2.3)

where c is the central charge, ε is a UV regulator, and gB := log〈B|0〉 an L-independent

constant called the boundary entropy [26].

To reproduce this universal result from the RT formula, we must allow the minimal

geodesic computing SA to end on the brane itself. From symmetry, one then learns that

the brane is a surface of constant tension (i.e. extrinsic curvature) determined by gB. In

higher dimensions, the story is similar, with universal results for the entanglement entropy

of a boundary-centred half-sphere reproduced by minimal surfaces ending on a constant

tension brane [27]. The appropriate generalization of (1.2) simply permits XA to end on

the brane B, an inclusion condition8 we can succinctly write as ∂XA\B = ∂A.

5Less mysteriously, we identify
∑

E |E〉|E〉 →
∑

E |E〉〈E| = I, using a CPT map on the second factor.
6More carefully, it obeys the kinematic constraint of preserving an SO(d, 1) subgroup of the full conformal

symmetry, and a dynamic channel duality constraint called the “boundary bootstrap” [20].
7In case of lingering doubt, there is an independent argument from gravitational physics in [23].
8So called because the brane is included in the bulk geometry for the purposes of the RT formula [28]. In
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Figure 5. Left. Projecting the TFD onto a boundary state of CFT2. Right. The embedding

geometry at fixed time is a wormhole cut off by a brane. The RT surface for a large subregion on

the right (green) passes through the horizon and ends on the brane.

In [23], we combine these ingredients to construct pure state black holes |B(β)〉 with

geometric interiors, and find boundary regions A which encode behind-the-horizon physics

(Fig. 5). By the AdS/BCFT dictionary, |B(β)〉 is the wormhole geometry of (1.1), ter-

minating on a constant tension brane. If boundary entropy dictates that the extrinsic

curvature is negative, it sits behind the black hole horizon. Finally, one can choose a

sufficiently large boundary region A that the RT surface ends on the brane.9

3 Entanglement entropy in 2d BCFTs

Using the gravitational ansatz of AdS/BCFT and the “inclusive” version of the RT formula,

we seem to be able to peer inside black holes. But how do we know when there is a classical

bulk geometry? And even if there is a geometry, is entanglement really captured by our

inclusive RT formula? These are questions about the microscopics of quantum gravity.

In [29], we answer both in the tractable but nontrivial setting of a 2d BCFT. The basic

observation is that the entanglement entropy can be obtained as a limit:

SA = lim
n→1

S
(n)
A := lim

n→1

1

n− 1
Tr[ρnA] . (3.1)

The S
(n)
A are n-Rényi entropies, and the trace Tr[ρnA] ∼ Z(n) is the partition function of

the replica geometry Rn, consisting of n copies of the system cyclically identified along the

cuts A. The answer is analytically continued to arbitrary n, and the limit n→ 1 taken, to

obtain the entanglement entropy.

Evaluating these replica partition functions explicitly is impossible in higher dimen-

sions. But in a 2d CFT, the replica geometry can be “mocked up” by local operators called

twists Φn (Fig. 6, left), implementing the cyclic boundary conditions [19, 30]. The Rényi

entropy is then just a correlator of these local operators. Hartman [31] performs the replica

calculation in a 2d CFT without boundary, explicitly matching the predictions of the RT

formula given the assumption of large central charge and a sparse spectrum of primary

operators. [29] repeats these steps for a 2d BCFT, with appropriate modifications, and

microscopically verifies the gravitational results.

fact, in the corresponding supergravity solutions, we expect the brane to arise from a smoothly degenerating

internal dimension, so that it genuinely is part of the geometry.
9For some regime of time and tension.
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Figure 6. Left. The entanglement entropy of an interval is computed by a correlator of twists, dark

green. Middle. Doubling the twists in an auxiliary CFT. There are two OPE Feynman diagrams.

Right. The corresponding RT surfaces in the bulk. The brane is a surface behind the horizon.

In more detail, we first note that the correlator (2.2) can be evaluated in imaginary

time on a strip of height β and infinite width.10 This is the image of the half-plane under

a conformal transformation, with a boundary at x = 0 mapping to the edges of the strip;

by symmetry, we can work in this simpler geometry. Consider a collection of k intervals

A =
⋃
i[x2i, x2i+1] on the half-plane. The n-Rényi entropy can be computed using a

doubling trick (Fig. 6, middle), based on the observation that the representation theory of

the BCFT is equivalent to doubling the insertions and placing them in a regular CFT. In

this auxiliary CFT, we define the “doubled” interval

−A ∪A =
⋃
i

[x2i, x2i+1] ∪ [−x2i+1,−x2i].

The usual CFT replica calculation gives

e(1−n)S
(n)
A =

〈∏
i

Φn(x2i)Φ̄n(x2i+1)Φn(−x2i+1)Φ̄n(−x2i)

〉
, (3.2)

with the boundary entropy encoded into the normalization of the twists [33].

For large central charge, c → ∞, and a gapped spectrum of bulk and boundary op-

erators, this correlator is dominated by the exchange of the identity operator, which we

can view as a virtual particle running in a cubic graph which joins insertions, i.e. a Feyn-

man diagram for the operator product expansion (Fig. 6, middle). There are different

diagrams, but from a large-c saddle-point expansion, one graph will dominate. In the bulk

(Fig. 6, right), this corresponds to the minimal length geodesic pairing of endpoints with

each other or the brane, which is precisely our modified RT formula in the limit n → 1.

This is a strong consistency check in the following sense. We start by identifying the bulk

dual which correctly reproduces the universal result for the entanglement entropy of a half-

interval via the RT formula. The RT formula then makes some non-universal predictions

about entanglement entropy. We find that, for some set of spectral conditions, we can

reproduce these non-universal predictions. Our procedure thus determines the quantum

gravity microscopics self-consistently encoded by our choice of bulk geometry.

10Technically, the CFT is on a spatial circle, but we decompactify it and invoke large-N volume indepen-

dence [32]. In Fig. 6 (right), we have compactified again.
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4 Information radiation

This construction can be brought to bear on a related puzzle of black hole physics. To set

the scene, in 1975, Hawking [34] discovered that black holes are not only formally thermal,

but emit a blackbody spectrum of Hawking radiation from the near-horizon region. Over

time, they can dissipate their energy into the environment and disappear. The Infor-

mation Paradox is that once the black hole has gone, only thermal radiation remains;

apparently, it takes its secrets to the grave. This destruction of secrets is irreversible, and

hence violates unitarity, one the basic principles of quantum mechanics.

In more detail, Hawking showed that the total entropy of black hole and radiation

increases, in accord with the generalized second law proposed by Bekenstein [35]:

dSgen

dt
≥ 0, Sgen =

Ahor

4G
+ Sext, (4.1)

where Ahor is the horizon area and Sext is the entropy of matter in the black hole exterior.

This is called the generalized or coarse-grained entropy. The fine-grained entropy is the

microscopic entanglement entropy of black hole system, S[BH] = −Tr[ρBH log ρBH]. If

evaporation is a unitary, highly chaotic reorganization of these degrees of freedom into the

radiation system, then S[BH] should go up as it becomes entangled with the radiation,

then down again as the system shrinks, describing the Page curve [36]. The Information

Paradox can be restated as a homework problem: find a way to compute fine-grained

entropy which gives the Page curve and not the monotonically increasing coarse-grained

answer. For bonus marks, justify it and explain why Hawking was wrong.

In principle, AdS/CFT does our homework for us, since black holes are dual to thermal

states in a closed, manifestly unitary system. There are two problems with this purported

resolution. First, AdS black holes do not evaporate, but are in equilibrium with the Hawk-

ing radiation bouncing back in from the boundary; second, even if the black hole could be

made to evaporate, the RT formula will not give a unitary answer!11

In [38, 39], both problems are elegantly resolved. To make black holes evaporate,

AdS/CFT is dunked in a flat-space bath, liberating the quanta from the prison of reflecting

boundary conditions. The fine-grained entropy is calculated using an older proposal of

Engelhardt and Wall [40]. This hacks generalized entropy (4.1) into an entanglement

functional the same way Ryu and Takayanagi hacked the Bekenstein-Hawking term. The

quantum extremal surface is the minimal extremum of

Sgen[A] =
A[XA]

4G
+ Sbulk[ΞA], (4.2)

where Sbulk[ΞA] is the entanglement entropy of bulk fields in the entanglement wedge ΞA.

The quantum extremal surfaces for boundary regions in this shrinking black hole reproduce

the Page curve and other expected features of unitary evaporation. Thus, information is

saved due to bulk discounts in entanglement entropy.

11A more sophisticated guess is the FLM formula [37], consisting of minimal surface plus bulk entangle-

ment in the entanglement wedge. For an evaporating black hole, this just gives the generalized entropy up

to small corrections. Note that FLM is different from (4.2) since it extremizes the first term only.
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This does not entirely resolve the paradox. The question remains: how does the

information get out when it is stuck behind a horizon? In toy models, the escape is

beautifully geometrized by an emergent higher dimension.12 In the AMMZ model [42],

a 2d black hole is dual to a 1d system, which is itself the boundary of a 2d holographic

BCFT. The BCFT thus provides a flat-space bath and 3d bulk spacetime, as in Fig. 7.

Quantum extremal surfaces are replaced by ordinary RT surfaces in the 3d bulk which can

end on the lower-dimensional black hole or a “Cardy brane”, introduced by hand to model

the evaporation. When the minimal surface for a half-infinite interval (Fig. 7, middle) hits

the interior, it forms an “island”, and provides a channel for the information to escape.

Figure 7. Left. Time slice of AMMZ [42]. Middle. At early times, the Cardy brane obstructs the

minimal surface for a half-infinite region of the BCFT, so it does not include any of the black hole

interior. Right. Like a lowering sluice, the Cardy brane opens up a channel to the interior.

In [43] (in progress when AMMZ was published), we repurposed the boundary state

black hole to give a simpler setup with explicit microscopic control. The basic idea is to

map the half-plane BCFT to the plane with a disk removed. Analytically continuing13 to

real time gives a boundary theory of two half-lines, accelerating away from each other on

Rindler trajectories, and joined in the 3d bulk by a brane (Fig. 8, left). The brane itself

has causal horizons and can therefore be regarded as a black hole.

Figure 8. Left. The bulk spacetime of [43], analytically continued from the plane minus a disk.

Right. The inevitable formation of an island, with the same coloring scheme as Fig. 7.

Instead of computing minimal surfaces for a single half-line, we have two symmetric

half-lines, A = (−∞,−x] ∪ [x,∞], and can compute their entanglement entropy as a func-

tion of time. Although these minimal surfaces initially skirt around the interior (Fig. 8,

bottom right), they inevitably transition to form an island (Fig. 8, top right). Once again,

the information sails out through an emergent dimension.

12This serves as a concrete realization of Susskind and Maldacena’s ER=EPR conjecture [41].
13This BCFT has Cartesian coordinates z = x + iτ , with disk at |z| = R. Analytic continuation means

performing the inverse Wick rotation t = −iτ from the τ = 0 surface, both in the boundary and the bulk.
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5 Wormholes, averages and eigenstates

Our toy models teach us that islands restore unitarity. But they don’t tell why Hawking

was wrong and we are right. We might expect this to depend on the ultraviolet details

of quantum gravity, and the original setting of AdS/CFT, where we have a stringy UV

completion by fiat, seems to reinforce this. But the island construction can be generalized

to black holes in flat space [44]. For better or worse, we need not invoke the arcane secrets

of quantum gravity to understand how a black hole evaporates.

Instead, we must probe the secrets of the Euclidean path integral. To compute entropy

in a canonical state S = −kB∂T (T logZ[β]), we first compute the partition function Z[β].

In gravity, the partition function is a sum over geometries subject to periodic boundary

conditions in imaginary time. The most elegant version of Hawking’s argument is due

to Gibbons and Hawking [45], who showed that in the semiclassical limit, the partition

function is dominated by a saddle-point “disk” geometry with action Idisk, and an exactly

thermal spectrum for the matter fields:

Zgrav[β] =

∫
β
Dg e−S[g] → e−IdiskZmatter[β]. (5.1)

In this canonically thermal sea, there are no islands in sight. The resulting entropy is

the coarse-grained entropy Sgen = −kB∂T (T logZgrav[β]), which always increases in accord

with the generalized second law.

Figure 9. Left. The disconnected saddle for n = 3, reproducing Hawking’s result. Right. A

connected Euclidean wormhole. If these wormholes survive as n→ 1, they can produce islands.

But we have seen a different prescription for fine-grained entropy. The replica trick

(3.1) instructs us to take the n → 1 limit of the partition function Z
(n)
grav[β] on n replicas.

If the geometries are disconnected, the partition function factorizes as Z
(n)
grav[β] = Zngrav[β],

and we recover Hawking’s result as n → 1. The landmark papers [46, 47] point out that

we should not only sum over geometries on each copy, but also the topologies connecting

them. We provide an example for n = 3 in Fig. 9. Islands form when these connected

contributions survive and dominate Hawking’s saddle in the n→ 1 limit.

The connected topologies are called Euclidean or replica wormholes, and they pose

a curious factorization puzzle. In AdS/CFT, the gravity partition function can be dually

calculated via a generating functional on the CFT side [48, 49]. For n copies, we simply have
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n identical and disconnected CFTs, and the generating functional trivially factorizes. How

is our putative sum over topologies consistent with this? One possibility is that gravity

secretly computes an ensemble average. To illustrate, consider states |i〉, |j〉 which are

orthogonal in the effective gravitational theory, 〈i|j〉 ≈ δij , but also have small corrections

Rij the gravity path integral cannot see:

〈i|j〉 = δij + e−S/2Rij . (5.2)

If these states are considered part of a statistical ensemble, then Rij is a random matrix

which vanishes on average, Rij = 0, but could have non-zero variance RijRji = σ2. Then

averaging over states not only agrees with the path integral in a single copy, 〈i|j〉 = δij ,

but gives off-diagonal contributions for two copies, e.g.

|〈i|j〉|2 = (δij +Rij)(δji +Rji) = δij + e−Sσ2. (5.3)

The first term is Hawking’s saddle, and e−Sσ2 a replica wormhole [46].

Unfortunately, this ensemble averaged theory is not unitary, the very property we

sought to preserve. In [50], we point out a simple mechanism for getting ensemble-averaged

answers without sacrificing unitarity: work with Haar-typical states14 in a microcanonical

energy band, similar in spirit to the ETH. These are pure states of a unitary theory, but

they self-average in the appropriate way to give connected contributions as in (5.3). Our

diagrammatic techniques apply to any suitably chaotic theory, so replica wormholes play

a role not only in evaporating a black hole, but boiling a kettle or lasing a heavy nucleus.

6 Future directions

We finish by sketching some ongoing projects and directions for future research. We also

note that the papers [51–53] are unlikely to appear in the thesis.

6.1 Looking for a bulk brane

Proving the RT formula for a 2d BCFT [29] shows that the bulk tells a self-consistent

story about entanglement. A natural question is whether the story remains self-consistent

when we add matter, i.e. perturbative scalar fields. Utilizing CFT bootstrap techniques

à la [20, 54, 55], it appears that holographic BCFTs are much more finely tuned than

their unboundaried counterparts, requiring independent constraints for each matter field

to ensure a sensible bulk spacetime. This is likely to be completed by early 2021.

6.2 Quantum tasks and islands

The emergent spacetime of AdS/CFT provides an apparently new set of resources for

performing quantum tasks. Duality means these are simply the old resources in disguise,

14Let HE be the Hilbert space of the microcanonical band. If G = U(HE) is the group of unitary

operators on the band, the uniform or group-invariant probability measure PG is called the Haar measure.

Haar-typical states U |ψ0〉 are generated by applying a unitary U , chosen according to PG , to a reference

state |ψ0〉 ∈ HE .
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motivating a task-based interpretation of holography [56]. In this vein, the connected

wedge theorem [57] uses the focusing theorem from classical gravity to prove that a “bulk

shortcut” for a position-based version of the BB84 protocol [58] can only be performed

when the entanglement wedge for the relevant boundary regions is connected.

By modifying the task to incorporate boundary information, we have been able to

prove a version of the connected wedge theorem for BCFTs. The time-reversed protocol

can be interpreted in terms of island formation, rescuing information stranded in a Rindler

black hole on the brane. The paper should appear later this year.

6.3 Pseudorandomness and the ETH

In [50], we took the viewpoint that the ETH is the statement that high energy eigenstates of

a chaotic theory are typical. But this typicality only holds with respect to a set of “simple”

low-point operators; in the context of black holes, these are the operators which probe the

exterior. Thus, high-energy eigenstates are only pseudorandom, and it is desirable to give

a characterization of this pseudorandomness, both in terms of states and operators. This

may connect to the appearance of pseudorandomness in wormhole growth [59] and the

complexity of decoding Hawking radiation [60].

A related question is how to build a gravitational effective theory using the typical

states of [50]. Bounds on near-orthogonal packings of vectors lead to stronger constraints

on the overlap matrix Rij from (5.2), and hence implications for effectively-averaged replica

wormholes. In this setting, various ambiguities in the replica prescription (see e.g. [61]),

related to subtleties of averaging, might be fruitfully addressed. This project is in its

preliminary stages.

6.4 A boundary bounty

A plethora of open questions remain about AdS/BCFT. In [23, 43], we claimed to access

behind-the-horizon when the entanglement wedge ΞA ends on the brane. But entanglement

wedge reconstruction [16] depends on equivalence of bulk and boundary modular flow [62],

which in turn depends on the FLM formula [37], none of which have been shown in the

context of AdS/BCFT. Modular flow in a 2d BCFT, and the special role of boundary states

in algebraic QFT, were discussed in [63], and have yet to be exploited in the holographic

context.

A related issue is how the quantum error-correcting properties of AdS/CFT [64, 65]

are modified in the context of AdS/BCFT. Progress was initiated in [66], which studied

a coarse notion of error correction for boundary state black holes, but a finer-grained

approach which deals with spatial subregions is wanting. So there is plenty to do!
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