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Introduction

We’ll be talking about the recent paper MIP* = RE (2001.04383), by Ji, Natarajan, Vidick,
Wright and Yuen.

This means that the yes-no questions you can reliably answer by quickly chatting to
entangled provers are the same questions which a Turing machine, if the answer is ’yes’,
will eventually say 'yes’ to. This is dramatically more powerful than anyone expected,
and according to people who know about these things, it is probably the important result
in computational complexity theory this century (so far).

But I'm not a complexity theorist, and I guess neither are you. Why should we care? It
turns out that this result tells us deep facts about entanglement, quantum mechanics,
and the theory of operator algebras, so I will focus on these.

CHSH inequality

Our path starts with a simple calculation. Say Alice and Bob each have a qubit, and a set
of operators Ay, A1, By, By with outcomes taking values 1. Alice and Bob are going to
do their measurements separately and without communicating, so we require that the A
and B commute.

We now ask the same question John Bell asked: can I use the pattern of bipartite cor-
relation, which I can think as a joint probability distribtion P(ab) over measurement
outcomes a and b, to rule out local hidden variable theories? In other words, can I show
the world isn’t classical?

As Bell found, the answer is yes: he computed some bounds on classical correlations
which Alice and Bob can violate with quantum mechanics. In the simple two-qubit case,
the bound is called the CHSH inequality. If we define

B = AgBy + AygB1 + A1By — A1 By,

then squaring gives
B* = 41 — [Ag, A1][Bo, B1].


https://arxiv.org/pdf/2001.04383.pdf
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Classical measurements themselves commute, i.e. [Ag, A1] = [Bo, Bi] = 0, so we immedi-
ately get a bound on the expectation of B:

[(B)] < V(B?) = 2.

We can think of any pattern of correlations P(ab) as a point on the hypercube [0,1]°
(technically the 15-dimensional hyperplane of probability distributions), since ab can take
16 values. The classical correlations are easy to describe. We start with deterministic
assignments to A;, B;. By giving Alice and Bob access to shared classical randomness,
you enlarge this set of points to its convex hull. The faces of this polytope saturate the
CHSH inequality.

This situation immediately generalises to a finite number of observables and outcomes:
the classical correlations are given by the convex hull of deterministic assignments, with
Bell inequalities on the faces. We’ll call the set of classical bipartite correlations C,,
where both Alice and Bob can choose n measurements to perform on their systems, and
each measurement has k£ outcomes. (We can allow for both more observers, and a more
complicated pattern of measurements, but it won’t actually affect any of our conclusions.)

Tsirelson bounds

So, that’s the classical story. But let’s return to our original two-qubit scenario. If Alice
and Bob share an entangled state, we can see from repeated measurements that they
violate CHSH. So this experimentally rules out local hidden variable theories, or at least,
the simplest ones.

But by how much can we violate the inequality? In other words, is there a quantum Bell
inequality constraining quantum correlations? It turns out there is, and we can find it by
reusing our expression for 3% and applying Cauchy-Schwarz:

|B?| = |41 — [Ao, A1][Bo, B1]| < 4+ [[Ao, Ai]| - |[Bo, B1]| < 4+ 2| Ao|| A1 | Bo|| B | = 8.
We learn that quantum mechanics obeys |(B)| < 2v/2.

This is called a Tsirelson bound. It’s sharp, in the sense that you can achieve it. For
instance, you can pick a Bell state (|01) — |10))/v/2, and the operators
Zy + Xo B Zy — Xo

Proceeding in this, you can get a bunch of special points and then generate their convex
hull.

Ay=721, Ai=X1, By=-

Let’s consider the same generalisation as before, where Alice and Bob have n observ-
ables, each with £ outcomes. We want to find the analogue of Bell inequalities, so these
Tsirelson bounds, and the set of bipartite correlations allowed by quantum mechanics.



* Perhaps surprisingly, this is much, much harder, and ambiguous in a deep way. But
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loosely speaking, this is because, in the quantum-mechanical case, we need to talk about
states as well as measurements, and talking about states requires a Hilbert space.

The problem is hard because we’re only given numbers n and k, so we need to figure the
right Hilbert space or spaces for the measurements to act on. We need to think about
representations. The problem is ambiguous because we have a choice about how to rep-
resent the fact that Alice and Bob make separate measurements and don’t communicate.

Tensor products vs commuting operators

Here are the two choices. First, we could act on tensor product Hilbert spaces H =
Ha ® Hp. This is the natural thing to do in finite-dimensional, non-relativistic quantum
mechanics, for instance if Alice holds some qubits and Bob holds some qubits. We’ll call
the allowed set of tensor-product correlations sz. Formally, we can define this as

Qi = {p(ablzy) = p(ablay) = (¥|A7 @ BY|v)},

where z and y labels observables, a and b label outcomes, the operators {A? : H4 — Ha}
and {B/ : Hp — Hp} are projective measurements on Alice and Bob’s factors, and
|) € Hp ® Hp is a state in a tensor product Hilbert space.

You might say this is unncessarily strong: all we really need is for Alice and Bob’s mea-
surements to commute. We’ll call this set of correlations from commuting operators ng,
and we have

Q5 = {p(ablzy) : plablzy) = (V|ALBY|¥)},

where now the operators {AZ, B/ : H — H} are POVMs on the full Hilbert space which
commute [AZ, B%] =0, and |¢)) € H for some Hilbert space.

Tensor product automatically implies commuting, and quantum correlations certainly
include the classical ones, so we have

A natural question is: are the quantum sets equal?

For a finite-dimensional Hilbert space, it turns out that the two choices are equivalent.
If Alice and Bob’s measurements commute, I can always factorise the Hilbert space to
respect this. But it's easy to come up with infinite-dimensional examples where Alice
and Bob’s operators commute, but we can’t factorise the Hilbert space. The canonical
example is quantum field theory, where you can’t factorise the Hilbert space spatially,
essentially because of short range entanglement. If I try and cut out a region around
Alice, I have to sever a bunch of spatial Bell pairs.
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Connes’ embedding conjecture

And in fact, you can using functional analysis to show that for infinite-dimensional Hilbert
spaces, QF, form a closed set, while the tensor product correlations QT, don't.

Problem solved, right? Not exactly. Tsirelson asked the subtler question: is the closure of
tensor product correlations Qﬁk equal to commuting correlations ng? In other words,
can I approximate a pattern of commuting quantum correlations arbitrarily well by a
tensor product correlation?

This may seem pedantic, but it’s actually a deep question about entanglement. Take some
correlations on an infinite-dimensional tensor product. You can use standard arguments
about convergence to show that this can be arbitrarily well-approximated by a finite-
dimensional tensor product. So the question becomes: can I approximate the patterns of
correlation possible with infinite entanglement (commuting case) by finite, but arbitrarily
large, amounts of entanglement (tensor product case)?

I will just mention in passing that we can also translate this question into the language of
operator algebras. The observables in commuting quantum correlations are related to an
object called the Type II; factor von Neumann algebra. The question then becomes: can
I approximate Type II; factors by matrices? (In operator algebra-ese, "approximate by
matrices" is more properly "embed in an ultrapower of the hyperfinite Type II; algebra".)
Fields medallist Alain Connes asked if this was the case in a footnote ~ 40 years ago.
Called Connes’ Embedding Conjecture, it has been one of the central unsolved problems
in operator algebra theory.

NPA hierarchy

Ok, after all this song and dance, let’s say what is known about these quantum corre-
lations. The set of commuting correlations is described by something called the NPA
hierarchy. Consider the strings of n POVMs A?, B;;’, and their linear span S,,. There is
a set of identities &, which hold for these strings simply by virtue of the fact that the
A?, B} are projective measurements and [A%, B/] = 0.

We can check if a pattern p(ab) satisfies the &, using semidefinite programming (SDP),
and if it does, find a positive semidefinite matrix I',, called a certificate, whose elements
are expectation values of overlaps of elements in S,. The positivity property is essen-
tially a Tsirelson bound at level n, and progressively constrains the allowed commuting
quantum correlations.

We can check that p is not allowed by simply testing for each n. If it’s not an allowed
correlation, at some finite n we will see it violates an inequality. If it is allowed, the
hierarchy is sufficient, but in general you need to test an infinite number of things! The
process may not halt.

The exception is when the operator has a finite-dimensional representation. When this
happens, there is a way for us to read this off the certificate I';,, and in fact construct the
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representation directly! This is the case, for instance, in our original two-qubit CHSH
example.

The main result of this NPA hierarchy is an approximation to ng from above. As we in-
crease n, we make the set of allowed correlations smaller, the constraints on certificates
I',, get tighter, and the Tsirelson bounds get smaller. We can bound Q7, (and hence Q¢,)
from below, using finite-dimensional approximations, but (Tsirelson’s problem) we don’t
know if the lower bounds on ng are sharp.

2 Complexity

2.1

Nonlocal games

* So, we are led by consideration from the consideration of correlation and entanglement
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to fairly deep questions about operator algebras. This suggests something interesting
is going on here. To make things even more interesting, we’re going to start moving in
the direction of computational complexity by turning correlation into a nonlocal game.
Rather than considering the whole joint probability distribution of Alice and Bob mea-
surements, a referee picks x,y according to some probability distribution 7. Alice and
Bob perform these measurements and return outcomes a and b.

This is a game, so to determine whether the players win or lose, the referee applies
some rules in the form of a binary predicate V (ab|zy) € {0, 1}, with 0 for failure and 1 for
success. In order to maximise their chances of success, the players get to choose their
measurements { A7, By} and the shared randomness or entanglement (the state [¢)) they
have access to. We think of these choices as a strategy.

The value of the game G = (m,V,n, k) is the probability of success. But we can define
this relative to the strategies we allow! There is the classical value, where we take the
supremum of V' over classical strategies p € C,,i

val(G) = sup Zw(my)V(ab|xy)p(ab|xy).

pecnk :cyab

Similarly, we can define the tensor product value val’(G) and commuting value val®(G).

Since classical strategies are quantum, and tensor strategies commute, it follows imme-
diately that
val(G) < val'(G) < val®(G).

Tsirelson’s problem becomes whether val' (G) = val®(G) for all G.

Multiprover interactive proofs

We can finally make contact with computational complexity by turning this nonlocal game
into a protocol for verifying proofs. We have to change hats, and think of the referee as



the verifier, trying to check if some claim is valid, for instance, that two graphs are non-
isomorphic. The players are now provers, whose goal is to convince the verifier of the
statement.

In more detail, the verifier will encode a yes-no problem into the game. Alice and Bob
meet beforehand and agree on a strategy and share some randomness or entanglement,
with no constraints on their computational power. Then the game starts, and the verifier
randomly asks questions, and based on the answers, makes a decision using the function
V. It's a "yes" if V = 1 and "no" if V = 0. Finally, we assume V is computed by some
polynomial time algorithm. The value of the game that we discussed earlier is just the
maximum probability that the provers can succeed in convincing the verifier of a "yes"
answer.

Since the verifier is asking random questions, this is a randomised proof, and since they
interact with multiple provers, it’s called a multiprover interactive proof system. The
complexity class MIP(2,1) (where "MIP" stands for multiprover interactive proof, and
(2,1) for "two provers with one round of interaction") consists of all yes-no question that
can reliably answered using a nonlocal game with classical provers.

More precisely, I can take a problem (e.g. "are these graphs non-isomorphic"), describe
the inputs via bit strings, and create language L consisting of all problem instances for
which the answer is yes. Then L € MIP(2, 1) if there is an efficient mapping from problem
instances z to games (., such that:

- if z € L, the value val(G;) > 2/3 (completeness);
- if 2 ¢ L, the value val(G;) < 1/3 (soundness).

In other words, if the answer is "yes", then there is a high probability of convincing the
verifier, and if the answer is no, there is a low probability.

There are a couple of neat results I'll mention. First of all, it turns out that restricting to
two provers and one round of interaction is no restriction at all:

MIP(2,1) = MIP.

Second, you can think of a multiprover interactive system as a verifier taking a
polynomial-length path through an exponentially tree of possible answer. You can think
of the tree as a static, exponentially long proof, so if there are no provers to interact with,
the verifier can read the whole in exponential time. So

MIP = NEXP,

the class of the exponential-time checkable proofs. This is the exponential version of NP.
This tells us that multiprover interactive proofs are extremely powerful!
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MIP*

So, MIP was defined using classical provers. The class MIP* is exactly the same, ex-
cept that now the provers are quantum: they can share entanglement and not just clas-
sical randomness. One of the intermediate results of the paper is that, without loss
of generality, we can assume we have two provers and one round of interaction, so
MIP*(2,1) = MIP*.

We have to make a choice about what sort of quantum correlations we’re allowing, so
we choose tensor products. (The corresponding complexity class for commuting value is
called MIP®°, and I might comment on it later.) So, MIP* is the class of languages which
can be reliably verified by a classical, polynomial-time verifier interacting with multiple
provers in different tensor factors of a Hilbert space. Same definition as before, but we
replace val(G,) with the "entangled value" val® (G.,).

The relationship between MIP and MIP* is actually unclear. Consider a language L € MIP.
Since val"(G,) > val(G.), completeness wrt MIP* is unaffected, but soundness may fail.
Similarly, for L € MIP*, soundness in MIP holds, but completeness may fail.

It turns out, for the languages reliably verified with classical provers, the entangled
value is approximately equal to the classical value, so these languages remain sound wrt
quantum provers. The question then is: how big is MIP*? How hard are the problems
I can solve by interacting with entangled quantum provers? Before this paper, the best
result was NEEXP C MIP*, showing that MIP* is considerably more powerful than MIP: it
lets a verifier efficiently check proofs which are doubly exponentially long. But maybe it
can do other things too.

Tsirelson’s conjecture and decidability

Let’s return to our original problem of understanding correlations. Solving problems in
MIP* is the same as approximating the entangled value of some nonlocal game, val®(G).
In turn, this is related to optimising over the set of tensor product quantum correlations.

Thinking back to what we know about these correlations, let’s think about how we might
approximate the value. We made the observation earlier that we can sharply approxi-
mate the set of correlations, and hence the entangled value, from below, using finite-
dimensional Hilbert spaces. You can just exhaustively search through these space, check
all the consistent assignments, and see what you get. That will be a lower bound on the
entangled value.

Let’s assume that the answer to Tsirelson’s problem, or equivalently Connes’ embedding
conjecture, is affirmative, and the entangled value is equal to the commuting value. Then
we also have a sharp approximation from above, by virtue of the NPA hierarchy.

Both of these take a long time to run, but the point is that we now have a procedure
which is guaranteed to halt and tell us if the entangled value is < 1/3, or more than 2/3,
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given a "promise" that one of these situations holds. I just dovetail, and run them at the
same time.

This is important. It’s telling us that if Tsirelson’s conjecture is true, then all the lan-
gauges MIP* are decidable: you can decide if a problem instance z € L or z ¢ L using an
algorithm which is guaranteed to halt and produce an output.

Undecidability

This finally leads us to the paper itself, which I'm only going to briefly comment on. Ji,
Natarajan, Vidick, Wright and Yuen claim that MIP* contains undecidable languages. In
fact, they show that

MIP* = RE,

where the complexity class RE is the set of recursively enumerable languages, i.e. those
accepted by some Turing machine, however long it takes to run. More precisely, L € RE
if there is a Turing machine M and z € L iff M halts and accepts when given z as an
input.

This is a huge class, containing not only every decidable language, but also undecidable
languages like the Halting Problem. Here, the question is just: will a Turing machine
halt on some input? This is in RE because I can just run the Turing machine on the input
and see if it halts; if it does, I give a big thumbs up and say "yes, it halts!"

Since this algorithm is just to run a Turing machine and wait for it to stop, and RE is
really the class of all such problems, it suggests correctly that the Halting Problem is
complete for the class. If you contain the Halting Problem, you contain $RE$!

But there is no general procedure halts(M, z) for telling when a Turing machine doesn’t
halt. If there was, you could define an evil recursive function

if halts (badHalts()) then loop
else halt.

badHalts() = {

This halts iff it doesn’t halt. The only way out of this contradiction is to assume the
predicate is partial, i.e. doesn’t always know the answer.

Let’s pause for a moment and absorb just how powerful multiple interactive provers are.
They can reliably persuade a polynomial verifier that a given Turing machine does or
does not halt, even though there is no deterministic procedure for doing this. It follows
that the answer to Tsirelson’s problem is negative, and Connes’ conjecture is false.

MIP* = RE

Let’s finish with a few brief details about the proof. It proceeds by designing an entangled
interactive proof for the Halting Problem. In more detail, they find an efficient way to
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take any Turing machine M (implicitly including the input), and find a game G, such
that, if the Turing machine halts, then

ValT(GM) =1,

and if it doesn’t, then
ValT(GM) <1l-e

I can get the usual soundness parameter by choosing ¢ = 2/3.

It follows immediately that deciding whether a pattern of correlations p(ab) is in the
set of tensor correlations QT, or even e-far from it in ¢; distance in the set of probability
distributions (promised one or the other is the case), is equivalent to the Halting Problem
and therefore undecidable. There are some inputs for which you can literally never
answer this question! The set of tensor correlations is dramatically more complicated
than anyone thought.

Since the Halting Problem is complete for RE, it follows that RE C MIP*, and the reverse
inclusion is trivial. Thus,
MIP* = RE.

We thought that MIP was powerful, but consulting entangled provers make you a god.

MIPco

You might wonder how field theory fits into the picture. Local algebras in AQFT are Type
IIT algebras, which are like the commuting Type II factors but without a trace. So they
are not described by MIP*. I suspect the corresponding complexity class is MIP®°, the set
of multiprover interactive proofs with commuting provers.

That raises the question: what the heck is MIP®°? It’s known that MIP®® is contained in
the complemenet of recursively enumerable languges coRE, i.e. the ones where a Turing
machine halts for z ¢ L rather than z € L. This is different from RE, because if they were
the same, then the Halting Problem would be decidable. I could recursively enumerate
both the things which halt and the things which don’t halt. Because they’re not the same,
MIPCC =£ MIP*,

That’s what we would expect, given that there seems to be this huge difference between
commuting and tensor models. But what is MIP“°? No one knows, but as the paper points
out, a pleasing "dual" result would be

MIP®® £ coRe.

They even give a one-paragraph outline of how that proof might go. So I'm not sure if
it’s a conjecture or another 165-page exercise for the diligent reader.
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Appendix: proof seen from very far away

The main idea seems to taking a (uniformly generated) family of nonlocal games in some
specific normal form, say {G,}, and compressing it exponentially to form a new family
of games in normal form {G/ } so that soundness and completeness are preserved:

val'(G)) =1 = val'(G}.) =1
1
val'(G,,) < 7 = vall (G) <

1

5"

If £(G,q) is the minimum local dimension of the entangled state needed for players to
succeed with probability ¢, then the compression procedure also has the property

E <G;1, ;) 2 max {g <G2n’ ;) ’229(71)} .

So, roughly, compression makes the dimension of the entangled state bigger.

The second step is to iterately compress to find an entangled interactive proof of the
Halting Problem. To begin with, consider a Turing machine M, and a family of nonlocal

games {ngz .} with the property that if M halts in at most n steps, then valT(Gggf a) =1,

and otherwise, ValT(GS&)n) <1/2.

Apparently this family is easy to construct in normal form. So you can compress it to
get a new family {Gg\l/l)n} such that if M halts in 2" steps, then valT(Gs\lA) ,) = 1, and if
it doesn’t halt, the value is < 1/2. Any strategy which achieves success with probability

g > 1/2 requires an entangled state of dimension at least 929,

Morally speaking, you iterate the compression procedure until the first game in the fam-
ily solves the Halting Problem. Technically, you don’t do this an infinite number of times,
but instead, look for a fixed point of the compression procedure, {Ggao)n} The nonlocal
game encoding the Halting Problem for M is then

G :G‘Aj)l.

The details are really hard and I don’t understand. It’s 165 pages for a reason! But this
is the proof seen from a great distance.
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