
PHYC20014 Physical Systems

Wave Theory and Fourier Analysis: Tutorial 1

Tutorial problems

1. Basic Fourier series. We start with some “get to know you” exercises. Sketch the periodic
extension of these functions and calculate their Fourier series.

(a) The square wave ⇧ : (�⇡,⇡] ! R:

⇧(✓) =

8
><

>:

+1 ✓ > 0

0 ✓ = 0

�1 ✓ < 0.

(b) The triangle wave � : (�⇡,⇡] ! R:

�(✓) = ⇡ � |✓|.

2. Derivatives. Check that (where di↵erentiable) �0 = �⇧. Di↵erentiating term-by-term,
verify this relation also holds for the associated Fourier series.

3. Sine, cosine and half-range. An odd function has the property that f(�✓) = �f(✓), while
an even function satisfies f(�✓) = f(✓).

(a) Show that for odd (even) functions, the Fourier coe�cients a

n

(b
n

) vanish. Since the
cosine terms vanish, an odd function has a sine series, and similarly, an even function
has a cosine series.

(b) Prove that you can uniquely split an arbitrary function f into odd and even parts:

f(✓) = f+(✓) + f�(✓), f±(�✓) = ±f±(✓).

Thus, the Fourier series for f splits into a cosine series for f+ and a sine series for f�.
(c) Recall from lectures that the half-range expansion of a function is a Fourier series valid

over [0, L]. We can use either a cosine series (a
n

terms) or sine series (b
n

terms). Find
both half-range expansions for f(✓) = e

✓ � 1 on [0,⇡], and comment on the di↵erence.

4. Dirac comb. The Dirac delta function �(t) models an infinitely strong point impulse, and
is defined by the “sifting” property

Z 1

�1
�(t)f(t) dx = f(0).

The Dirac comb X
T

is a periodically repeating version with period T :

X
T

(✓) ⌘
1X

k=�1
�(✓ � kT ).

(a) For X
T

, derive the Fourier series representation

X
T

(✓) =
1

T

1X

n=�1
e

i!n✓

, ! ⌘ 2⇡

T

.



(b) *Check that the series representation of X
T

(✓) blows up at multiples of T . Show that,
at other points, we get infinitely fast oscillations.1

5. Numerical series. Evaluating a Fourier series at a well-chosen point sometimes yields
nontrivial mathematical results. Earlier, you should have found that ⇧(✓) has the Fourier
series

⇧(✓) =
1X

n=0

4

(2n+ 1)⇡
sin[(2n+ 1)✓].

By wisely choosing a point to evaluate both sides, prove Leibniz’s formula for ⇡:

⇡

4
=

1X

n=0

(�1)n

2n+ 1
= 1� 1

3
+

1

5
� 1

7
+ . . .

Extra problems

6. Exponential Fourier series. For a function with period T , we usually write

f(✓) =
a0

2
+

1X

n=1


a

n

cos (!n✓) + b

n

sin (!n✓)

�
, ! =

2⇡

T

.

Recall from lectures that we can write the same series using complex exponentials:

f(✓) =
1X

n=�1
c

n

e

in!✓

.

Determine the relationship between c

n

and the a

n

, b

n

for a real function.

7. Chebyshev polynomials. You may recall de Moivre’s theorem from high school:

(cos ✓ + i sin ✓)n = cos(n✓) + i sin(n✓).

Expand the LHS and take the real part of both sides. You will get some linear combination
of products of powers of cos ✓ and even powers of sin ✓; converting the latter to cosines using
sin2 ✓ = 1� cos2 ✓, the end result is an expression for cos(n✓) which is a polynomial in cos ✓:

cos(n✓) ⌘ T

n

(cos ✓), n = 0, 1, 2, . . .

The polynomials T
n

are called Chebyshev polynomials. Since T

n

(cos ✓) = cos(n✓), Chebyshev
polynomials are related to cosine series (Problem 4). Making the change of variable x = cos ✓,
use results about Fourier series to show that

Z 1

�1

T

m

(x)T
n

(x)p
1� x

2
dx =

8
><

>:

⇡

2 m = n and m,n � 1,

⇡ m = n = 0,

0 else.
1
These infinite oscillations vanish in the sense of generalised functions. Understanding what this means rigorously

is beyond the scope of the course.



8. The Gibbs phenomenon. Note: This problem requires a computer. Any finite sum
of trigonometric functions is continuous. Thus, any partial sum in the Fourier series for a
discontinuous function is fundamentally di↵erent from the function that it represents. This
leads to some rather strange behaviour in the convergence of Fourier series, as we’ll now see.

(a) Recall that the Fourier series for ⇧(✓) is

⇧(✓) =
1X

n=1

4

(2n� 1)⇡
sin[(2n� 1)✓].

Define the partial Fourier series

⇧
N

(✓) ⌘
NX

n=1

(�1)n

2n� 1
sin[(2n� 1)✓].

Using a computer, plot ⇧
N

for N = 5, 10, 50, 100.
(b) You should observe an “overshoot” in ⇧

N

at the discontinuities of ⇧. This is called the
Gibbs phenomenon. Does the size of the overshoot appear to change with N? Estimate
how large it is compared to the underlying discontinuity. (You should find that the jump
is ⇠ 8.95% the size of the discontinuity.)

(c) We can try to eliminate the Gibbs phenomenon as follows. Define the �-approximated

series for a function f as

f

k

N

(✓) ⌘ a0

2
+

NX

n=1

sinc
⇣
n

N

⌘
k


a

n

cos (!n✓) + b

n

sin (!n✓)

�
,

where ! ⌘ 2⇡/T as usual, and

sinc(x) ⌘ sin(⇡x)

⇡x

.

Play around with di↵erent values of N and k (using your own code or gibbs.nb) and
see what happens. What is the tradeo↵ for suppressing the overshoot?

9. The Basel problem. The triangle wave �(✓) from 1(b) has Fourier series

�(✓) =
⇡

2
+

1X

n=1

4

(2n� 1)2⇡
cos [(2n� 1)✓] .

(a) By a judicious selection of ✓, show that

1X

n=1

1

(2n� 1)2
=

⇡

2

8
.

(b) Let B denote the sum of reciprocal squares,

B ⌘
1X

n=0

1

n

2
.



Determining B is called the Basel problem, and was first posed by in 1644. It took
almost 100 years and the genius of Leonard Euler (1707–1783) to solve it. Show that

B =
1

4
B +

1X

n=0

1

(2n+ 1)2
,

and use your result from (a) to conclude that

1X

n=1

1

n

2
=

⇡

2

6
.

10. Harmonic symmetry.*We can generalise the decomposition into odd and even parts (Prob-
lem 3) as follows. Consider a complex map f : C ! C, and fix a natural number n. Let
! ⌘ e

2⇡i/n be an n-th root of unity, so that !n = 1. Define

f

j

(z) ⌘ 1

n

n�1X

k=0

f(!k

z)!�jk

.

(a) Show that f
j

(!m

z) = !

jm

f

j

(z), and that

f(z) =
n�1X

j=0

f

j

(z).

Hint. Recall the formula for geometric sums,

n�1X

j=0

!

�jk =
1� !

�kn

1� !

�k

, k 6= 0.

(b) Check that setting n = 2 reproduces the results in Problem 3(b).
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Wave Theory and Fourier Analysis: Tutorial 1

Solutions

1. Basic Fourier series. We use the usual formulas:

a

n

=
1

L

Z
L

�L

cos

✓
⇡n✓

L

◆
f(✓) d✓, b

n

=
1

L

Z
L

�L

sin

✓
⇡n✓

L

◆
f(✓) d✓,

setting L = ⇡. We also exploit the results of Problem 4.

(a) First, let’s graph the periodic extension:

-3 π -2 π -π π 2 π 3 π

-1

1

For the square wave, the a

n

vanish by symmetry (see Problem 4). The remaining sine
terms are given by

b

n

=
1

⇡

Z
⇡

�⇡

sin (n✓)⇧(✓) d✓

=
2

⇡

Z
⇡

0
sin (n✓) d✓

= � 2

n⇡


cos(n✓)

�
⇡

0

=
4

n⇡

[1� (�1)n] =

(
4/n⇡ n odd

0 n even.

Hence, the Fourier series for the periodic extension of ⇧ is

⇧(✓) =
1X

n=1

b

n

sin (n✓) =
1X

n=0

4

(2n+ 1)⇡
sin[(2n+ 1)✓].

(b) We begin with a graph:

-3 π -2 π -π π 2 π 3 π

π



For the triangle wave, the b

n

vanish by symmetry (see Problem 4). From geometry, the
area under the curve a0 = ⇡. This leaves

a

n

=
1

⇡

Z
⇡

�⇡

cos (n✓)�(✓) d✓

=
2

⇡

Z
⇡

0
cos (n✓) (⇡ � ✓) d✓

=
2

n⇡


sin(n✓)(⇡ � ✓)

�
⇡

0

+
2

n⇡

Z
⇡

0
sin (n✓) d✓

= � 2

n

2
⇡


cos(n✓)

�
⇡

0

=

(
4/n2

⇡ n odd

0 n even.

Hence, the Fourier series for the periodic extension of � is

�(✓) =
a0

2
+

1X

n=1

a

n

cos (n✓) =
⇡

2
+

1X

n=1

4

(2n� 1)2⇡
cos[(2n� 1)✓].

2. Derivatives. On (�⇡,⇡], �(✓) = ⇡ � |✓|, and hence

�0(✓) =

(
+1 �⇡ < ✓ < 0

�1 0 < ✓ < ⇡.

Hence, �0 = �⇧ on (�⇡, 0)[(0,⇡). This also clearly holds for the periodic extensions, except
at multiples of ⇡ where � is not di↵erentiable. Now we di↵erentiate the Fourier series for �:

d

d✓

"
⇡

2
+

1X

n=1

4

(2n� 1)2⇡
cos[(2n� 1)✓]

#
= �

1X

n=1

4

(2n� 1)⇡
sin[(2n� 1)✓],

which is indeed the Fourier series for �⇧.

3. Sine, cosine and half-range.

(a) For an odd function, we split the integral in two and make a change of variable ✓ ! �✓

in the second part:

a

n

=
1

L

Z
L

�L

cos

✓
⇡n✓

L

◆
f(✓) d✓

=
1

L

Z
L

0
cos

✓
⇡n✓

L

◆
f(✓) d✓ +

1

L

Z 0

�L

cos

✓
⇡n✓

L

◆
f(✓) d✓

=
1

L

Z
L

0
cos

✓
⇡n✓

L

◆
f(✓) d✓ � 1

L

Z
L

0
cos

✓
⇡n✓

L

◆
f(✓) d✓ = 0.

Note that, in the last line, we have two sign changes which cancel — one from the fact
that f is odd, and the other from flipping the integration limits. This derivation works
for all n � 0. The proof that b

n

vanishes for even f is analogous.



(b) One approach is to work backwards. Suppose we can decompose f = f+ + f� into odd
and even parts. Then

f(�✓) = f+(�✓) + f�(�✓) = f+(✓)� f�(✓).

We combine this with the expression for f(✓) to get

f+(✓) =
1

2
[f(✓) + f(�✓)], f�(✓) =

1

2
[f(✓)� f(�✓)].

It is an easy exercise to check that these expressions are, in fact, even and odd.
(c) We can use a neat trick from first-year calculus to calculate sine and cosine coe�cients

at the same time. First, do the exponential integral

C

n

⌘ 2

⇡

Z
⇡

0
f(✓)ein✓ d✓

=
2

⇡

Z
⇡

0
(e✓ � 1)ein✓ d✓

=
2

⇡

"
e

(in+1)✓

1 + in

� e

in✓

in

#
⇡

0

=
2

⇡


(�1)ne⇡ � 1

1 + in

+ i

(�1)n � 1

n

�
=

2

⇡


(�1)ne⇡ � 1

1 + n

2
� i(�1)n

e

⇡ � 1

n

�
.

Since e

in✓ = cos(n✓) + i sin(n✓), we immediately have C

n

= a

n

+ ib

n

, or

a

n

=
2[(�1)ne⇡ � 1]

⇡(1 + n

2)
, b

n

=
2(�1)n+1(e⇡ � 1)

⇡n

.

These look very di↵erent! The cosine series has coe�cients / 1/n2, and the sine series
has coe�cients / 1/n. Ultimately, this is due to the fact that the even extension of f is
continuous, while the odd extension has a discontinuity.

4. Dirac comb.

(a) We can regard X
T

as a periodic extension of �(x) with period T ⌘ 2L. Thus, we can
represent it as a Fourier series on the domain (�L,L]. Using the sifting property, the
coe�cients of the exponential Fourier series are

c

n

=
1

T

Z
L

�L

�(✓)e�i!n✓

d✓ =
1

T

.

Thus,

X
T

(x) =
1X

n=�1
c

n

e

i!nx =
1

T

1X

n=�1
e

i!nx

.

(b) We can split the exponential Fourier series as follows:

X
T

(x) =
1

T

1X

n=0

e

i!nx +
1

T

1X

n=1

e

�i!nx

.



If x = Tk for some integer k, then

e

i!nx = e

i!nkT = e

i2⇡nk = 1 = e

�i!nx

.

Thus, each term in the series above equals 1 and it diverges to +1. For other values of
x, we can try to evaluate use a geometric series and see what happens:

X
T

(x) =
1

T

1X

n=0

e

i!nx +
1

T

1X

n=1

e

�i!nx

=
1

T

lim
N!1

"
N�1X

n=1

e

i!nx +
1

T

N�1X

n=1

e

�i!nx

#

=
1

T

lim
N!1


1� e

i!Nx

1� e

i!x

+
e

�i!x(1� e

�i!Nx)

1� e

�i!x

�

=
1

T

lim
N!1


1� e

i!Nx

1� e

i!x

� 1� e

�i!Nx

1� e

i!x

�

=
2i

T (ei!x � 1)
lim

N!1
sin(!Nx).

This is not well-defined! The sine term just oscillates faster and faster as N ! 1.
However, there is a sense in which these infinitely oscillating functions vanish, connected
to generalised functions like the Dirac delta. It is beyond the scope of the course, but
look up the Riemann-Lebesgue lemma if you’re interested.

5. Numerical series. The general idea is to pick somewhere the sine terms are easy to evaluate
but nonzero. So, let’s try ✓ = ⇡/2. Then ⇧(✓/2) = 1, and the Fourier series is

1X

n=0

4

(2n+ 1)⇡
sin[(2n+ 1)⇡/2] =

4

⇡

1X

n=0

(�1)n

2n+ 1
.

Equating the two gives

1 =
4

⇡

1X

n=0

(�1)n

2n+ 1
,

which is equivalent to Leibniz’s formula.

6. Exponential Fourier series. Expanding the exponential series using Euler’s formula,

f(✓) =
1X

n=�1
c

n

e

in!✓

=
1X

n=�1
c

n


cos (n!✓) + i sin (n!✓)

�

= c0 +
1X

n=1


(c

n

+ c�n

) cos (n!✓) + i(c
n

� c�n

) sin (n!✓)

�
.



Equating coe�cients, we see that

a0 = 2c0, a

n

= c

n

+ c�n

, b

n

= i(c
n

� c�n

).

Equivalently, c±n

= (a
n

⌥ ib

n

)/2. It is no accident that c

n

= c

⇤
�n

; this is called the reality

condition, and is equivalent to the Fourier series being real.

7. Chebyshev polynomials. We follow the instructions:

Z 1

�1

T

m

(x)T
n

(x)p
1� x

2
dx = �

Z 0

⇡

T

m

(cos ✓)T
n

(cos ✓)

sin ✓
(� sin ✓ d✓)

=

Z
⇡

0
cos(n✓) cos(m✓) d✓.

At this point, we remember that we have already done these integrals for Fourier series! In
fact, the standard orthogonality results give

Z
⇡

0
cos(n✓) cos(m✓) d✓ =

8
><

>:

⇡

2 m = n and m,n � 1,

⇡ m = n = 0,

0 else.

8. The Gibbs phenomenon. See gibbs.nb.

9. The Basel problem.

(a) We pick ✓ = 0, since both sides will be nonzero and easy to evaluate:

�(0) =
⇡

2
+

1X

n=0

4

(2n+ 1)2⇡
.

Since �(0) = ⇡, we can rearrange to find

1X

n=0

1

(2n+ 1)2
=

⇡

2

8
.

(b) We separate the series B into even and odd terms:

B =
1X

n=1

1

n

2
=

1X

n=1

1

(2n)2
+

1X

n=0

1

(2n+ 1)2

=
1X

n=1

1

(2n)2
+

1X

n=0

1

(2n+ 1)2
=

1

4
B +

1X

n=0

1

(2n+ 1)2
.

Hence,
3

4
B =

1X

n=0

1

(2n+ 1)2
=) B =

4

3

1X

n=0

1

(2n+ 1)2
=

⇡

2

6
.



10. Harmonic symmetry.*

(a) We simply compute:

f

j

(!m

z) =
1

n

n�1X

k=0

f(!k+m

z)!�jk

=
1

n

n�1X

k=0

f(!k

z)!�j(k�m)

= !

jm

1

n

n�1X

k=0

f(!k

z)!�jk = !

jm

f

j

(z).

On the second line, we relabelled the dummy index k ! k+m, using the n-fold symmetry
of the sum over roots of unity. Similarly, we can swap the order of the finite sums over
j and k, and use the formula for geometric sums, to get

n�1X

j=0

f

j

(z) =
n�1X

j=0

1

n

n�1X

k=0

f(!k

z)!�jk

=
1

n

n�1X

k=0

f(!k

z)
n�1X

j=0

!

�jk

=
1

n

· nf(z) + 1

n

n�1X

k=1

f(!k

z)
1� !

�kn

1� !

�k

= f(z).

In the last step, we used the fact that !�kn = (!n)�k = 1. Hence,

f(z) =
n�1X

j=0

f

j

(z).

(b) Setting n = 2, we note that the second roots of unity are just ±1. The results in (a)
become

f±(z) =
1

2
(f(z)± f(�z)), f(z) = f+(z) + f�(z).

This is exactly what we found (albeit for real functions) in Problem 3(b).
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Tutorial problems

1. Series and di↵erentiation. Sometimes, we can take a function defined in terms of a series,
di↵erentiate it with respect to a parameter, and end up with a new and useful result. In
this context, we won’t worry too much about convergence. Let’s see an example! In a later
problem, you can use the results of your calculation to find the “sum” of all natural numbers.

(a) Using the geometric series, show that for ↵ > 0,

1X

n=0

e�n↵ =
1

1� e�↵

.

(b) Di↵erentiating both sides with respect to ↵, derive the identity

1X

n=1

ne�n↵ =
e↵

(e↵ � 1)2
. (1)

2. Series solution of ODEs. Series give us a powerful method for solving ordinary di↵erential
equations. Let’s try an ODE we can check using elementary methods:

y00 + !2y = 0, y(0) = 1, y0(0) = 0.

This has solution y = cos(!x). Arrive at the same solution using a power series

y(x) =
1X

n=0

a
n

xn.

In this question, you may assume power series are unique. You will also need the Taylor series
for cosine,

cos(!x) =
1X

n=0

(�1)n

(2n)!
(!x)2n.

3. D’Alembert’s formula. Verify that

u(x, t) =
1

2

⇥
f(x� vt) + f(x+ vt)

⇤
+

1

2v

Z
x+vt

x�vt

g(y) dy

solves the initial value problem for the wave equation:

@2u

@x2
=

1

v2
@2u

@t2
, u(x, 0) = f(x), u̇(x, 0) = g(x).

4. Tuning a clarinet. In acoustic applications of Fourier series, periodic functions represent
sound waves, i.e. fluctuations around atmospheric pressure. Sine and cosine terms are called
pure tones ; squaring the coe�cient tells you how loud the tone is. It turns out we can learn
a lot about instruments just using first-year physics and Fourier series.



(a) For a half-open pipe of length A (e.g. a clarinet), what are the allowed wavelengths?
Convert them into frequencies using the speed of sound v

s

. You should find allowed
angular frequencies

!
n

=
⇡v

s

(2n+ 1)

2A
, n = 0, 1, 2, . . .

These are the odd harmonics; even harmonics can’t resonate and quickly die away.

(b) Suppose we force the air in the clarinet to vibrate at a non-resonant pure tone, with
waveform sin(2⇡f✓). Calculate the Fourier series over the basic interval [�L,L], where
L ⌘ 2A/v

s

. You should find a
n

= 0 and

b
n

=
2nL(�1)n sin(2⇡fL)

⇡[(2fL)2 � n2]
.

Which harmonic do you expect to be loudest?

5. Legendre polynomials. The Legendre polynomials P
n

can be defined by Rodrigues’ for-

mula:

P
n

(x) ⌘ 1

2nn!

dn

dxn
(x2 � 1)n.

They form an orthogonal basis for functions on [�1, 1], with respect to the inner product

hf, gi =
Z 1

�1
f(x)g(x) dx.

(a) Use Rodrigues’ formula to calculate the first three Legendre polynomials. Apply the
Gram-Schmidt procedure to the ordered basis (1, x, x2) and show that the two methods
agree up to normalisation. You can generate all Legendre polynomials from Gram-
Schmidt, but Rodrigues’ formula is much nicer.

(b) Using the Rodrigues’ formula and integration by parts n times, show that

Z 1

�1
P
n

(x)P
m

(x) dx /
Z 1

�1
(�1)n(x2 � 1)n ·Dm+n(x2 � 1)m dx

where D ⌘ d/dx is the derivative operator. Conclude that the P
n

are orthogonal.



Extra problems

6. Peak hour di↵usion. At peak hour (t = 0), commuters cram onto the train and begin the
long trek home. Each carriage has length T and a single door halfway down the carriage. If
there are N commuters, we can model the initial commuter density distribution as

n(x, 0) = N�
�
x� 1

2T
�
.

Since commuters like their own space, we can model the attraction to regions of lower density
with a di↵usion equation:

@

@t
n(x, t) = D

@2

@x2
n(x, t),

@

@x
n(0, t) =

@

@x
n(T, t) = 0. (2)

The boundary conditions ensure that no commuters “leak out” of the ends of the carriage.

(a) Show that a separable solution n(x, t) = �(x)e��t, � � 0, must satisfy

d2�

dx2
= �!2�, !2 ⌘ �

D
. (3)

(b) Solve (3), and verify that the boundary conditions for n(x, t) imply

!T = k⇡ (4)

for some integer k. Label the corresponding choices of !, � by !
k

, �
k

.

(c) Using the linearity of (2), combine the results of (a) and (b) to obtain

n(x, t) =
1X

k=0

a
k

cos (!
k

x) e��kt.

From the Fourier series for n(x, 0) (or orthogonality directly), verify the coe�cients

a0 =
N

T
, a

k

=
2N

T
cos

✓
!
k

T

2

◆
, k > 0.

(d) As t ! 1, what does n(x, t) look like? Is the total number of commuters conserved?

7. Epicycles. Recall that we can write the Fourier series for f in terms of exponentials,

f(✓) =
1X

n=�1
c
n

ei!n✓, c
n

=
1

2L

Z
L

�L

f(✓)e�i!n✓ d✓, ! =
⇡

L
.

This remains true for functions which execute periodic motion in the complex plane.

Interpret each term of the form c
n

ei!n✓ geometrically. Deduce that any periodic motion
on the plane can be decomposed into a sum of circular motions. In light of this observation,
why is Ptolemy’s theory of celestial motion unfalsifiable for periodic orbits?

https://www.youtube.com/watch?v=QVuU2YCwHjw


8. The method of Frobenius. Here’s a trickier ODE we can solve with power series:

x2y00 + 4xy0 + (x2 + 2)y = 0.

We try the method of Frobenius, which uses a generalised power series of the form

y(x) = xs
1X

n=0

a
n

xn (5)

where s is some rational number to be determined, and a0 6= 0 (otherwise we change the
definition of s). Show that s = �2, s = �1 are consistent, and for s = �2, derive the solution

y =
a0 sinx

x2
.

You will need the Taylor series for sine,

sinx =
1X

n=1

(�1)nx2n�1

(2n� 1)!
.

9. Fundamental solutions of Laplace’s equation.* Note: This problem requires some

vector calculus; ignore it if you haven’t done the subject! For three spatial dimensions, verify
that

�(x) = � 1

4⇡|x|
solves the inhomogeneous Laplace equation

r2�(x) = ��(x).

Hint. Let B be the unit ball and S = @B the unit sphere. Apply Gauss’ theorem:
Z

B

r · F dV =

I

S

F · n̂ dA.

Recall that n̂ is an outward pointing unit normal.

10. An infamous sum.* Expand the RHS of (1) as a Taylor series in ↵ to find that

1X

n=1

ne�n↵ =
1

↵2
� 1

12
+ higher order terms.

In some physical contexts (e.g. the Casimir e↵ect), we can take ↵ ! 0 and throw away the
↵�2 term on physical grounds, yielding the somewhat infamous equation

1X

n=1

n = 1 + 2 + 3 + · · · ?!
= � 1

12
.

Here are some results on power series you may find useful:

e↵ = 1 + ↵+
1

2
↵2 +

1

6
↵2 + · · ·

1

(1 + a1x+ a2x2 + · · · )2 = 1� 2a1x+ (3a21 � 2a2)x
2 + · · · .



11. Hermite polynomials.* The Hermite polynomials H
n

(x), n = 0, 1, 2, . . ., are a family of
polynomials on R, orthogonal and complete with respect to the inner product

hf, gi ⌘
Z 1

�1
e�x

2
f(x)g(x) dx.

In physics, they are most famous as the wavefunctions of the quantum harmonic oscillator. In
this problem, we will get familiar with the generating function for the Hermite polynomials,

G(s, x) ⌘ e2sx�s

2 ⌘
1X

n=0

H
n

(x)
sn

n!
.

In other words, we start with a function G(s, x) of two variables, expand it as a Taylor series
in s, and define H

n

(x)/n! as the coe�cient of sn.

(a) Using the definition of the Taylor expansion, derive Rodrigues’ formula for Hermite
polynomials:

H
n

(x) = (�1)nex
2 dn

dxn
e�x

2
.

Explain briefly why this is a polynomial.

(b) By calculating the partial derivative of G with respect to x in two ways, derive the
recurrence relation

H 0
n+1(x) = 2(n+ 1)H

n

(x), n � 0. (6)

Similarly, from the partial derivative with respect to s, deduce the recurrence relation

H
n+1(x)� 2xH

n

(x) + 2nH
n�1(x) = 0, n � 1. (7)

(c) Combine the results in (b) to yield the di↵erential equation satisfied by the Hermite
polynomials,

H 00
n

(x)� 2xH 0
n

(x) + 2nH
n

(x) = 0.



PHYC20014 Physical Systems

Wave Theory and Fourier Analysis: Tutorial 2

Solutions

1. Series and di↵erentiation.

(a) Now is a good time to brush o↵ the cobewbs and recall the geometric series:

1X

n=0

xn =
1

1� x
provided |x| < 1.

Since ↵ > 0, |e�↵| < 1 and we can use the above result:

1X

n=0

e�n↵ =
1X

n=0

(e�↵)n =
1

1� e�↵

.

(b) Let’s di↵erentiate with respect to ↵, assuming we can di↵erentiate term-by-term. For
the power series on the LHS, this gives

d

d↵

1X

n=0

e�n↵ =
1X

n=0

d

d↵
e�n↵ = �

1X

n=1

ne�n↵.

For the expression on the RHS, we get

d

d↵

1

1� e�↵

=
�e�↵

(1� e�↵)2
= � e↵

(e↵ � 1)2
.

Equating the two gives (1). (If you are interested, the property of the series that allows
us to di↵erentiate term-by-term is called uniform convergence.)

2. Series solution of ODEs. So, we guess a power series solution of the form

y(x) =
1X

n=0

a
n

xn.

The initial condition y(0) = 1 implies a0 = 1, while y0(0) = 0 implies a1 = 0. Di↵erentiating,

y00(x) =
1X

n=2

a
n

n(n� 1)xn�2 =
1X

n=0

a
n+2(n+ 2)(n+ 1)xn.

Thus, our original ODE becomes

y00(x) + !2y(x) =
1X

n=0


a
n+2(n+ 2)(n+ 1) + !2a

n

�
xn = 0.



From the uniqueness of power series, the coe�cients vanish, i.e.

a
n+2(n+ 2)(n+ 1) + !2a

n

= 0.

Since a1 = 0, it follows immediately that for all odd n, a
n

= 0. For even n, we have

a0 = 1 =) a2 = �!2a0
1 · 2 = (�1)1

!2

2!
=) a4 = �!2a2

3 · 4 = (�1)2
!4

4!
· · ·

Hopefully you can see the pattern. Otherwise, you can use induction to show that

a2n = (�1)n
!2n

(2n)!
.

Hence, our power series solution is

y(x) =
1X

n=0

a
n

xn =
1X

n=0

(�1)n
(!x)2n

(2n)!
= cos(!x).

Of course, this is much more work than the elementary solution. Unlike elementary methods,
however, the series solution approach is very general and powerful.

3. D’Alembert’s formula. Since all terms in u(x, t) are a function of x± vt, it clearly solves
the wave equation. At t = 0,

u(x, 0) =
1

2

⇥
f(x) + f(x)

⇤
+

1

2v

Z
x

x

g(y) dy = f(x)

so the first initial condition is satisfied. For the second, note that

u̇(x, t) =
1

2

⇥
� vf(x� vt) + vf(x+ vt)

⇤
+

1

2v

⇥
vg(x+ vt)� vg(x� vt)

⇤

=) u̇(x, 0) = g(x).

Thus, u(x, t) solves the initial value problem.

4. Tuning a clarinet.

(a) Since a half-open pipe has a node at one end and an anti-node at the other, the allowed
wavelengths are

�
n

=
4A

2n+ 1
, n = 0, 1, 2, . . .

Since v
s

= �
n

!
n

/2⇡, the allowed angular frequencies are

!
n

=
2⇡v

s

�
n

=
⇡v

s

(2n+ 1)

A
, n = 0, 1, 2, . . .



(b) The non-resonant pure tone sin(2⇡f✓) is an odd function, so the a
n

terms vanish. Using
a sine series and some trig identities, we get

b
n

=
2

L

Z
L

0
sin

✓
n⇡✓

L

◆
sin(2⇡f) d✓

=
1

L

Z
L

0

⇢
cos

h⇣n⇡
L

� 2⇡f
⌘
✓
i
� cos

h⇣n⇡
L

+ 2⇡f
⌘
✓
i�

d✓

=
1

L

"
sin[

�
n⇡

L

� 2⇡f
�
✓]

n⇡/L� 2⇡f
�

sin[
�
n⇡

L

+ 2⇡f
�
✓]

n⇡/L+ 2⇡f

#
L

0

=
1

L
· 2n⇡ sin(2⇡fL) cos(n⇡)

(2⇡f)2 � (n⇡/L)2

=
2nL(�1)n sin(2⇡fL)

⇡[(2fL)2 � n2]
.

Generally, b
n

will peak at the odd n where the denominator is smallest, that is, the odd
n closest to 2fL.

5. Legendre polynomials.

(a) Let’s start with Rodrigues’ formula:

P0(x) ⌘ (x2 � 1)0 = 1

P1(x) ⌘
1

2

d

dx
(x2 � 1) = x

P2(x) ⌘
1

8

d2

dx2
(x2 � 1)2 =

1

2

d

dx
(x3 � x) =

1

2
(3x2 � 1).

Now we apply Gram-Schmidt to (1, x, x2) ⌘ (f1, f2, f3) to yield the orthonormal set
(g1, g2, g3). Remember that the general idea is to step through the original basis vectors,
projecting out the part orthogonal to the orthonormal basis you’ve constructed so far,
then normalise what’s left. We label these vectors: f ! f 0 ! g.

Since we start with an empty orthogonal basis, the first step is just to normalise f1:

|f1|2 =
Z 1

�1
dx = 2 =) g1(x) =

1p
2
/ P0(x).

Now we project out the g1 dependence in f2 to get f 0
2:

hf2, g1i =
Z 1

�1

1p
2
x dx = 0 =) f 0

2 = f2 � hf2, g1ig1 = f2.

Now we normalise f 0
2 = f2:

|f2|2 =
Z 1

�1
x2 dx =

2

3
=) g2(x) =

r
3

2
x / P1(x).



Finally, we project out the g1 and g2 dependence in f3:

hf3, g1i =
Z 1

�1

1p
2
x2 dx =

p
2

3

hf3, g2i =
Z 1

�1

r
3

2
x3 dx = 0

=) f 0
3(x) = f3(x)� hf3, g1ig1(x)� hf3, g2ig2(x) = x2 � 1

3
/ P3(x).

We note that g3 / f 0
3, and hence g3 / P3. Thus, Rodrigues’ formula agrees with Gram-

Schmidt up to normalisation.
(b) We don’t need to worry too much about normalisation here, since everything will vanish.

Consider the inner product of two Legendre polynomials P
n

and P
m

, and assume without
loss of generality that n � m:

hP
n

, P
m

i =
Z 1

�1
P
n

(x)P
m

(x) dx /
Z 1

�1
Dn(x2 � 1)n ·Dm(x2 � 1)m.

Applying integration by parts once gives


Dn�1(x2 � 1)n ·Dm+1(x2 � 1)m

�1

�1

�
Z 1

�1
Dn�1(x2 � 1)n ·Dm+1(x2 � 1)m.

In the first term, applying the derivative operator Dn�1 to the polynomial (x2 � 1)n

leaves an overall factors of (x2 � 1) out the front (using the chain rule). Hence, the
surface terms vanish, and we conclude

Z 1

�1
Dn(x2 � 1)n ·Dm(x2 � 1)m = �

Z 1

�1
Dn�1(x2 � 1)n ·Dm+1(x2 � 1)m.

Applying the same trick n times, we obtain

hP
n

, P
m

i =
Z 1

�1
(�1)n(x2 � 1)n ·Dm+n(x2 � 1)m dx.

Finally, if we assume the polynomials are distinct, with n 6= m, then our initial assump-
tion becomes n > m. It follows that n+m > 2m, and the derivative kills the polynomial,
which is of order 2m:

Dn+m(x2 � 1)m = 0.

Hence, Legendre polynomials are orthogonal:

hP
n

, P
m

i = 0, n 6= m.

6. Peak hour di↵usion.

(a) For a separable solution n(x, t) = �(x)e��t, the di↵usion equation (2) implies

���(x)e��t = D�00(x)e��t =) d2�

dx2
= � �

D
�.



(b) For ! > 0, the solutions to (3) are just trigonometric functions:

�(x) = a cos(!x) + b sin(!x).

However, the boundary conditions n0(0, t) = n0(T, t) = 0 imply �0(0) = �0(T ) = 0, or

�0(0) = ![�a sin(! · 0) + b cos(! · 0)] = �!B = 0

�0(T ) = �!a sin(!T ) = 0,

where we have simplified the second equation using the first. The second implies !T = k⇡
for some integer k 6= 0. For ! = 0, the equation �00 = 0 has general solution �(x) = ax+b;
the boundary conditions imply a = 0, so we end up with the constant solution.

(c) We have a di↵erent solution for each nonnegative integer value of k. Since the di↵usion
equation is linear, we can combine them to get a general solution

n(x, t) =
1X

k=0

�
k

(x)e��kt =
a0
2

+
1X

k=1

a
k

cos (!
k

x) e��kt.

Recall our initial condition

n(x, 0) =
a0
2

+
1X

k=1

a
k

cos (!
k

x) = N�(x� 1
2T ).

Using orthogonality directly (and sneakily including the constant term in k = 0),

a
k

=
2

T

Z 1

�1
n(x, 0) cos (!

k

x) dx

=
2

T

Z 1

�1
N�(x� 1

2T ) cos (!k

x) dx =
2N

T
cos

✓
!
k

T

2

◆
.

(d) Separable terms �
k

(x)e��kt with �
k

> 0 decay exponentially; as t ! 1, they vanish.
Since �0 = 0, only the k = 0 term survives. Hence,

n(x, t) ⇠ a0
2

=
N

T
.

This is a constant! Integrating over the length of the carriage, we see that the total
number of commuters is indeed conserved:

Z
T

0
n(x,1) dx =

Z
T

0

N

T
dx = N.

7. Epicycles. Geometrically, each term c
n

ei!n✓ describes motion in a circle centred at the
origin. Writing c

n

= rei�, the circular motion has

• angular speed !|n|,
• direction given by the sign of n (+ccw and �cw),
• radius r,
• phase o↵set �.



Since Ptolemy’s theory of epicycles breaks periodic orbits into a sum of a such circular motions,
it has no physical content: it is just the exponential Fourier series!

8. The method of Frobenius. The approach is very similar to Problem 2. The generalised
power series, and its derivatives, are

y(x) =
1X

n=0

a
n

xn+s

y0(x) =
1X

n=0

a
n

(n+ s)xn+s�1

y00(x) =
1X

n=0

a
n

(n+ s)(n+ s� 1)xn+s�2.

The LHS of our ODE becomes

x2y00 + 4xy0 + (x2 + 2)y =
1X

n=0

a
n

(n+ s)(n+ s� 1)xn+s +
1X

n=0

4a
n

(n+ s)xn+s +
1X

n=0

(x2 + 2)a
n

xn+s

=
1X

n=0

�
(n+ s)(n+ s� 1) + 4(n+ s) + 2

 
a
n

+ a
n�2

�
xn+s

where on the last line, we extended the lower bound on the sum from n = 0 to n = �2 by
setting a�2 = a�1 = 0. Setting the coe�cients to zero, we obtain the recurrence relation

0 =
�
(n+ s)(n+ s� 1) + 4(n+ s) + 2

 
a
n

+ a
n�2

=
�
(n+ s)(3 + n+ s) + 2

 
a
n

+ a
n�2.

Consider the n = 0 term:

(s2 + 3s+ 2)a0 = (s+ 1)(s+ 2)a0 = 0.

Since a0 6= 0, this implies s = �1 or s = �2. Selecting s = �1, the recurrence becomes

a
n

= � a
n�2

n(n+ 1)
.

As in Problem 2, by computing some examples, or using induction, you can show that a2n+1 =
0, and

a2n =
(�1)na0
(2n+ 1)!

.

The corresponding generalised power series is

y(x) =
1X

n=0

a
n

xn+s =
1X

n=0

(�1)na0
(2n+ 1)!

x2n�1 =
a0 sinx

x2
.

This was only slightly more work than solving the trivial ODE in Problem 2! In general, series
solutions “scale” well. More often than not, the issue is not finding the recurrence relation,
but figuring out if your power series can be written in a nicer way.



9. Fundamental solutions of Laplace’s equation. To verify that r2�(x) = ��(x), we first
check that

r2�(x) = 0, x 6= 0.

Since |x|�1 = (x2 + y2 + z2)�1/2, you can easily compute

r
✓

1

|x|

◆
= � x

|x|3 , r
✓

1

|x|3

◆
= � 3x

|x|5 .

Hence, using vector identity 6 of Appendix A of the notes, for x 6= 0:

r2�(x) = � 1

4⇡
r ·r

✓
1

|x|

◆

=
1

4⇡
r ·

✓
x

|x|3

◆

=
1

4⇡


1

|x|3 (r · x) + x ·r
✓

1

|x|3

◆�

=
1

4⇡


3

|x|3 � 3x · x
|x|5

�
=

1

4⇡


3

|x|3 � 3

|x|3

�
= 0.

Figuring out the behaviour at x = 0 is a bit trickier, but the main thing is to reproduce the
sifting property Z

V

r2�(x) = �1,

where V is any volume containing the origin. Let B be the unit ball. By Gauss’ theorem,
Z

B

r ·r�(x) =

I

S

r�(x) · n̂ dA =
1

4⇡

I

S

x · x
|x|3 dA =

1

4⇡

Z

S

dA = 1,

where we have used the fact that n̂ = x, |x| = 1 on the unit sphere.

10. An infamous sum.* Using (1) and the supplied power series identities,

1X

n=1

ne�n↵ =
e↵

(e↵ � 1)2

= e↵ · 1

(e↵ � 1)2

=

✓
1 + ↵+

1

2
↵2 + · · ·

◆
1

↵2(1 + 1
2↵+ 1

6↵
2 + · · · )2

=
1

↵2

✓
1 + ↵+

1

2
↵2 + · · ·

◆✓
1� ↵+


3

4
� 2

6

�
↵2 + · · ·

◆

=
1

↵2

✓
1 +


1

2
� 1 +

5

12

�
↵2 + · · ·

◆

=
1

↵2
� 1

12
+ · · · .

Note that, at each point, we can tell how many terms to keep in the power series expansions
by thinking about how many terms we require in our final result.



11. Hermite polynomials.*

(a) Recall that in a Taylor series, the coe�cients are related to derivatives of f :

f(s) =
1X

n=0

sn

n!

dnf(s)

dsn

����
s=0

.

By definition, the H
n

(x) are Taylor coe�cients of G(s, x), so

H
n

(x) =
dnG(s, x)

dsn

����
s=0

.

Noting that
G(s, x) = e2sx�s

2
= e�x

2
e�(s�x)2 ,

it follows that

H
n

(x) =
dnG(s, x)

dsn

����
s=0

= e�x

2 dn

dsn
e�(s�x)2

����
s=0

= e�x

2 dn

dtn
e�t

2

����
t=�x

= (�1)ne�x

2 dn

dxn
e�x

2
.

Each derivative just brings down polynomials by the chain rule, but leaves an overall
factor e�x

2
to be cancelled by the ex

2
prefactor.

(b) Let’s calculate the partial derivative with respect to x, first for the closed form of G(s, x):

@

@x
e2sx�s

2
= 2sG(s, x) =

1X

n=0

2H
n

(x)
sn+1

n!
.

Now let’s di↵erentiate the power series directly:

@

@x

1X

n=0

H
n

(x)
sn

n!
=

1X

n=1

H 0
n

(x)
sn

n!
=

1X

n=0

H 0
n+1(x)

sn+1

n!(n+ 1)
,

using H0(x)0 = (1)0 = 0 in the first equality. Equating the sn coe�cients yields

H 0
n+1(x) = 2(n+ 1)H

n

(x), n � 0.

Similarly, for the partial derivative for s, we have

@

@s
e2sx�s

2
= 2(x� s)G(s, x)

=
1X

n=0

2(x� s)H
n

(x)
sn

n!

=
1X

n=0

2xH
n

(x)
sn

n!
�

1X

n=1

2H
n�1(x)

sn

n!



and
@

@s

1X

n=0

H
n

(x)
sn

n!
=

1X

n=1

H
n

(x)
sn�1

(n� 1)!
=

1X

n=0

H
n+1(x)

sn

n!
.

Equating the two and shu✏ing terms around, we obtain

H
n+1(x)� 2xH

n

(x) + 2nH
n�1(x) = 0, n � 1.

(c) We use (6) to simplify (7), writing everything in terms of H
n+1:

0 = H
n+1(x)� 2xH

n

(x) + 2nH
n�1(x)

= H
n+1(x)�

2x

2(n+ 1)
H 0

n+1(x) +
1

2(n+ 1)
H 00

n+1(x).

Multiplying through by 2(n+ 1) and shifting n+ 1 ! n, we obtain

H 00
n

(x)� 2xH 0
n

(x) + 2nH
n

(x) = 0.
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Tutorial problems

1. Basic Fourier transforms. Fourier transform the following functions. Note. Our conven-
tion for Fourier transforms and inverses is

F̂ [f ](u) =

Z 1

�1
f(x)e�2⇡iux

dx, F̂�1[F ](x) =

Z 1

�1
F (u)e2⇡iux du.

(a) The rectangle function rect, defined by

rect(x) =

8
><

>:

1 |x| < 1
2

1
2 |x| = 1

2

0 otherwise.

(b) The triangle function ⇤, defined by

⇤(x) =

(
1� |x| |x| < 1

0 otherwise.

2. Fourier transform properties. From basic Fourier transforms, we move on to results about
Fourier transforms. As usual, F denotes the Fourier transform F̂ [f(x)]. Prove the following:

(a) Similarity. For any constant a 6= 0,

F̂ [f(ax)] =
1

|a|F
⇣
u

a

⌘
.

(b) Shifts. For any constant a,

F̂ [f(x� a)] = F (u)e�2⇡iua
.

(c) Derivatives. Assuming f vanishes as x ! ±1,

F̂ [f 0(x)] = 2⇡iuF (u).

3. Gaussians. A Gaussian is a function of the form exp(�↵x

2); they are of supreme importance
to physics, both in theory and practice. We explore a few of their basic properties.

(a) Let

I(↵) ⌘
Z 1

�1
e

�↵x

2
dx.

By changing from Cartesian to polar coordinates, prove that

I(↵)2 =

Z 1

�1

Z 1

�1
e

�↵(x2+y

2)
dx dy =

Z 1

0

Z 2⇡

0
e

�↵r

2
(r d� dr).

Deduce the famous Gaussian integral :

I(↵) =

r
⇡

↵

. (1)



(b) Complete the square in the exponent to show that

Z 1

�1
e

�↵x

2+�x

dx =

r
⇡

↵

exp

✓
�

2

4↵

◆
. (2)

Use this result1 to compute
Z 1

�1
e

�↵x

2
e

i�x

2
e

�2⇡iux
dx.

This integral crops up when calculating di↵raction patterns in optics.

(c) Verify that the Fourier transform of a Gaussian is another Gaussian, of the form

F̂ [e�↵x

2
](u) =

r
⇡

↵

exp

✓
�⇡

2
u

2

↵

◆
. (3)

4. Convolutions. Recall that the convolution of f and g is defined by

(f ⇤ g)(x) ⌘
Z 1

�1
g(⇠)f(x� ⇠) d⇠ =

Z 1

�1
f(⇠)g(x� ⇠) d⇠.

(a) Prove the convolution theorem:

F̂ [f ⇤ g] = F̂ [f ]F̂ [g].

Hint. Use the sneaky factorisation e

�2⇡iux = e

�2⇡iu⇠
e

�2⇡iu(x�⇠).

(b) Sketch the convolution rect ⇤ rect without doing any calculation. What is it?

5. Heaviside step and Dirac delta. The Heaviside step function ⇥ : R ! R models a signal
instantaneously switching on at x = 0:

⇥(x) =

8
><

>:

+1 x > 0
1
2 x = 0

0 x < 0.

(a) Show that, in the sense of generalised functions, ⇥0(x) = �(x). Hint. Integrate ⇥0(x)
against a test function and use integration by parts. Alternatively, integrate directly.

(b) Using F̂ [�(x)] = 1 and F̂ [f 0(x)] = 2⇡iuF (u), derive the Fourier transform

F̂ [⇥(x)] =
1

2⇡iu
.

1
You may assume (2) holds for complex numbers � and ↵, with Re(↵) > 0.



Extra problems

6. More fun with Fourier transforms. Assorted exercises on Fourier transforms.

(a) Show that F̂2[f(x)] = f(�x). In other words,

f(x)
F̂�! F (u)

F̂�! f(�x).

So, calculating F gives us two transforms for the price of one!

(b) Using properties of the Fourier transform only (no integrals!), prove the following:

i. F̂ [sinc] = rect.

ii. F̂ [e2⇡iaxf(x)] = F (u� a).

iii. F̂ [fg] = F ⇤G.

7. Feynman’s trick for Gaussians. There is a neat trick for evaluating integrals that Feynman
used to great e↵ect; it is also called di↵erentiating under the integral sign or Leibniz’s rule.
The rule is

d

d↵

Z
b

a

f(x,↵) dx =

Z
b

a

@

@↵

f(x,↵) dx,

provided f is a smooth function and the limits a, b do not depend on ↵.

(a) By di↵erentiating both sides of (1) with respect to ↵, deduce that

Z 1

�1
x

2
e

�↵x

2
dx =

1

2

r
⇡

↵

3
.

(b) *Di↵erentiate n times to obtain

Z 1

�1
x

2n
e

�↵x

2
dx =

r
⇡

↵

(2n� 1)(2n� 3) · · · 3 · 1
(2↵)n

.

8. The Uncertainty Principle. You will have to wait until third year to see the full quantum-
mechanical proof of Heiseinberg’s uncertainty principle. However, there is a closely related
result about Fourier transforms. As you learned in high school, a Gaussian of the form

1p
2⇡�2

e

�x

2
/2�2

has standard deviation �. This measures the spread of the distribution. Let �

x

denote the
spread of a spatial Gaussian wavepacket and �

u

the spread of its Fourier transform. Show
that

�

x

�

u

=
1

2⇡
.

9. Fourier puzzles.*

(a) Find all functions f with the property that f ⇤ f = f . Hint. Convolution theorem.

(b) Using properties of the Fourier transform (or an explicit construction), find a fixed point
of the Fourier transform, that is, a function f such that F̂ [f ] = f .



10. The Klein-Gordon equation. The 1D wave equation describes how disturbances propagate
on a massless string. To describe a massive string, we need the Klein-Gordon operator:

LKG ⌘ @

2

@t

2
� @

2

@x

2
+ 4⇡2�2,

where � is proportional to the density of the string. The Klein-Gordon equation is LKGf = 0.
Recall that the Green’s function � for LKG must satisfy

LKG� = ��(x)�(t). (4)

By Fourier transforming (4) with respect to both time and space, show that the Greens’
function �̂(k,!) ⌘ F̂ [�(x, t)] for the Klein-Gordon equation satisfies

�̂(k,!) = � 1

4⇡2
1

k

2 � !

2 + �

2
.

This tells us how a point disturbance spreads on a heavy string. Incidentally, it also describes
the behaviour of elementary particles like the Higgs boson!

11. The Schrödinger equation.* The Schrödinger equation for a free particle

� ~2
2m

@

2
 

@x

2
� i~@ 

@t

= 0

is formally just a di↵usion equation with imaginary coe�cient D = i~/2m. We showed in
class that the fundamental solution of the Schrödinger equation was

�
t

(x) ⌘ �(x, t) = N(t) exp

✓
imx

2

2~t

◆
,

where N(t) is a time-dependent normalisation factor.

(a) At t = 0, suppose we have a Gaussian wavepacket:

 0(x) ⌘  (x, 0) = Ce

�x

2
.

Use the fundamental solution and the method of Greens’ functions to show that

 (x, t) =

Z 1

�1
 (⇠, 0)�(x� ⇠, t) d⇠. (5)

(b) We can rewrite (5) in the simple form ( 0 ⇤ �
t

). Define �(t) ⌘ �m/2~t, and assume
that the identity in Problem 3(c) holds for imaginary ↵. Using the convolution theorem
and Problem 3(c), prove

 (x, t) = CN(t)

r
⇡

+ i�(t)
exp

✓
�


i�(t)

+ i�(t)

�
x

2

◆
. (6)

(c) The probability distribution for the particle is given by | |2. Ignoring the normalisation
factors (which do not a↵ect the shape) and focussing on the Gaussian part, show that

| (x, t)|2 / exp

✓
� x

2

2�2(t)

◆
, �

2(t) =
~2t2
m

2
+

1

4
.

Since �2(t) directly measures the spread of the wavepacket, what is happening to the
wavepacket as t increases?
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Solutions

1. Basic Fourier transforms.

(a) No tricks here, we just plug and chug:

F̂ [rect](u) =

Z 1

�1
rect(x)e�2⇡iux

dx

=

Z 1/2

�1/2
e

�2⇡iux
dx

= � 1

2⇡iu

⇥
e

�2⇡iux
⇤1/2
�1/2

dx

=
1

2⇡iu

�
e

⇡iu � e

�⇡iu) dx

=
sin(⇡u)

⇡u

⌘ sinc(u).

The function sin(⇡u)/⇡u is so ubiquitous that we give it a new name, the sinc function.

(b) For this Fourier integral, we can use the fact that ⇤ is even, and the exponential splits
into an even part cos(2⇡ux) and an odd part sin(2⇡ux):

F̂ [⇤](u) =

Z 1

�1
⇤(x)e�2⇡iux

dx

=

Z 1

�1
(1� |x|)e�2⇡iux

dx

= 2

Z 1

0
(1� x) cos(2⇡ux) dx

=
1� cos(2⇡u)

2(⇡u)2

=
sin2(⇡u)

(⇡u)2
= sinc2(u).

On the fourth line, we used integration by parts, and on the fifth, the double angle
formula. An alternative approach is to use the convolution theorem (Problem 4(b)).
First, calculate (visually as per Problem 4(a) or otherwise)

(rect ⇤ rect)(x) =
Z 1

�1
rect(⇠)rect(x� ⇠) d⇠ = ⇤(x).

Then, by the convolution thorem

F̂ [⇤](u) = F̂ [rect ⇤ rect](u) = F̂ [rect](u)2 = sinc2(u).



2. Fourier transform properties.

(a) Assume a > 0. Then, in the Fourier integral, make the change of variable s = ax:

F̂ [f(ax)](u) =

Z 1

�1
f(ax)e�2⇡iux

dx

=
1

a

Z 1

�1
f(s)e�2⇡i(u/a)s

ds =
1

a

F (u/a).

For a < 0, the integration limits flip and we get the same result as above, but with a
minus sign. Combining the two, we get the similiarity theorem:

F̂ [f(ax)](u) =
1

|a|F (u/a).

(b) Again, we shift variables s = x� a

F̂ [f(x� a)](u) =

Z 1

�1
f(x� a)e�2⇡iux

dx

=

Z 1

�1
f(s)e�2⇡iu(s+a)

ds

= e

�2⇡ia
Z 1

�1
f(s)e�2⇡iu(s+a

ds = e

�2⇡ia
F (u).

(c) Here, we need to assume that the function f(x) vanishes as x ! ±1. Then, integrating
by parts,

F̂ [f 0(x)](u) =

Z 1

�1
f

0(x)e�2⇡iux
dx

=
⇥
f(x)e�2⇡iux

⇤1
�1 �

Z 1

�1
f(x)

@

@x

e

�2⇡iux
dx

= 2⇡iu

Z 1

�1
f(x)e�2⇡iux

dx = 2⇡iuF (u).

3. Gaussians.

(a) As per usual, we are not too concerned with convergence. Then

I(↵)2 =

Z 1

�1
e

�↵x

2
dx

Z 1

�1
e

�↵y

2
dy

=

Z 1

�1

Z 1

�1
e

�↵(x2+y

2)
dx dy

=

Z 1

0

Z 2⇡

0
e

�↵r

2
(r d� dr)

= 2⇡

Z 1

0
e

�↵r

2
r dr) = �⇡

↵

⇥
e

�↵r

2⇤1
0

=
⇡

↵

.

Hence,

I(↵) =

r
⇡

↵

.



(b) First, note that

�↵x

2 + �x = �↵

✓
x� �

2↵

◆2

+
�

2

4↵
.

Now we just shift variables s = x� �/2↵ and use part (a):
Z 1

�1
e

�↵x

2+�x

dx = exp

✓
�

2

4↵

◆Z 1

�1
e

�↵s

2
ds

=

r
⇡

↵

exp

✓
�

2

4↵

◆
.

To evaluate the last integral, we change ↵ ! ↵� i� and � ! �2⇡iu, and use (2):
Z 1

�1
e

�↵x

2
e

i�x

2
e

�2⇡iux
dx =

r
⇡

↵� i�

exp

✓
� ⇡

2
u

2

↵� i�

◆
.

(c) We take the Fourier transform, and set � = �2⇡iu in the result in (b):

F̂ [e�↵x

2
](u) =

Z 1

�1
e

�↵x

2
e

�2⇡iux
dx =

r
⇡

↵

exp

✓
�

2

4↵

◆
=

r
⇡

↵

exp

✓
�⇡

2
u

2

↵

◆
.

4. Convolutions.

(a) We sneakily factorise e

�2⇡iux as suggested, and make the change of variables s = x� ⇠:

F̂ [f ⇤ g](u) =
Z 1

�1
(f ⇤ g)(x)e�2⇡iux

dx

=

Z 1

�1

Z 1

�1
g(⇠)f(x� ⇠) d⇠e�2⇡iux

dx

=

Z 1

�1
g(⇠)e�2⇡iu⇠

Z 1

�1
f(x� ⇠)e�2⇡iu(x�⇠)

d⇠, dx

=

Z 1

�1
g(⇠)e�2⇡iu⇠

d⇠

Z 1

�1
f(s)e�2⇡ius

ds = F̂ [g](u)F̂ [f ](u).

(b) To evaluate the convolution (f ⇤ g)(x) visually, we first take a copy of the function f .
We then take a copy of g, flip it with respect to the x axis, and shift it to the right by x.
Finally, we multiply these two functions (regular f and shifted, flipped g) and compute
the integral over R. We illustrate this using f = g = rect below:



The convolution is clearly piecewise linear, and consideration of the diagram shows that

rect ⇤ rect(x) =

8
>>>><

>>>>:

0 x < �1

1 + x �1  x  0

1� x 0 < x < 1

0 x � 1

.

But this is just a long-winded description of ⇤(x), which we encountered in Problem 1.

5. Heaviside step and Dirac delta.

(a) For a test function f(x) which is di↵erentiable and vanishes at x ! ±1, integration by
parts and the fundamental theorem of calculus yield

Z 1

�1
⇥0(x)f(x) dx = �

Z 1

�1
⇥(x)f 0(x) dx

= �
Z 1

0
f

0(x) dx = �[f(x)]10 = f(0).

This is precisely the sifting property of �(x), so ⇥0(x) = �(x).

(b) Using F̂ [�] = 1 and the derivative theorem, part (a) implies

F̂ [⇥] =
1

2⇡iu
F̂ [⇥0] =

1

2⇡iu
F̂ [�] =

1

2⇡iu
.

Incidentally, combining this with the shift theorem, we get another way to Fourier trans-
form of rect, since

rect(x) =
1

2


⇥

✓
x� 1

2

◆
+⇥

✓
1

2
� x

◆�
.

I leave the details to the interested reader.

6. More fun with Fourier transforms.

(a) A simple way to prove this is to use the Fourier transform representation of the delta
function:

�(x) =

Z 1

�1
e

2⇡ux
du.

So, it follows that

F̂2[f ](x) =

Z 1

�1

Z 1

�1
dy du f(y)e�2⇡iuy

e

�2⇡iux

=

Z 1

�1
dy f(y)

✓Z 1

�1
du e

�2⇡iu(x+y)

◆

=

Z 1

�1
dy f(y)�(�(x+ y)) =

Z 1

�1
dy f(y)�(x+ y) = f(�x).

On the last line, we used the fact that � is even.

(b) i. Since rect is even, this follows immediately from Problem 1(a) and 6(a).



ii. Take the Fourier transform of the RHS, and use Problem 2(b) (the shift theorem)
and 6(a):

F̂ [F (u� a)](x) = F̂ [F ](x)e�2⇡ixa = f(�x)e�2⇡ixa
.

But this is just the Fourier transform of the LHS. Hence, the two sides must be
equal.

iii. Here, we Fourier transform both sides and check they are equal, using Problem 4(b)
(the convolution theorem) and 6(a) again. For convenience, let f�(x) ⌘ f(�x). We
then have

F̂2[fg] = f�g� = F̂ [F ]F̂ [G] = F̂ [F ⇤G],

as required.

7. The Uncertainty Principle. We use the results of Problem 3(b) with

↵ =
1

2�2
x

,

⇡

2

↵

=
1

2�2
u

.

Combining the two,

�

x

�

u

=
1

2⇡
.

It turns out (though we will not prove it here) that the Gaussian transform pair minimises
the product �

x

�

u

, so in general

�

x

�

u

� 1

2⇡
.

This is clearly analogous to the uncertainty principle. In signal processing, this is called the
time-bandwidth relation.

8. Feynman’s trick for Gaussians. We prove part (b) only; (a) is a special case. Di↵erentiate
both sides of (1) with respect to ↵, n times. Using Feynman’s trick, the LHS is

d

n

d↵

n

Z 1

�1
e

�↵x

2
dx =

Z 1

�1

@

n

@↵

n

e

�↵x

2
dx = (�1)n

Z 1

�1
x

2n
e

�↵x

2
dx.

The RHS is

d

n

d↵

n

r
⇡

↵

=
p
⇡

d

n

d↵

n

↵

�1/2 = (�1)n↵�n�1/2p
⇡

(2n� 1)(2n� 3) · · · 3 · 1
2n

.

Equating the two and dividing by (�1)n gives the desired result,

Z 1

�1
x

2n
e

�↵x

2
dx =

r
⇡

↵

(2n� 1)(2n� 3) · · · 3 · 1
(2↵)n

.

9. Fourier puzzles.*

(a) From the convolution theorem, if f ⇤ f = f , then F

2 = F , where F ⌘ F̂ [f ]. It follows
that, at each point u, F (u) must be 1 or 0. For instance, since F̂ [�] = 1, it follows that
� ⇤ � = �; this is also easy to see directly. Less trivially, since F̂ [sinc] = rect, and rect is
always 1 or 0, we have the nonobvious result sinc ⇤ sinc = sinc.



(b) There are lots of ways to do this. One is to use the result of Problem 3(c) to check that
the Gaussian

f(x) = e

�⇡x

2

is its own Fourier transform. A more general construction is as follows: take any even
function f and its Fourier transform F , and add them together. Then

f(x) + F (x)
F̂�! F (u) + f(�u) = F (u) + f(u)

using part (a) and the fact that f is even. So, there is no shortage of fixed points!

10. The Klein-Gordon equation. We will become intimately familiar with the 2D Fourier
transform in the context of optics. Mathematically, it is just two separate Fourier transforms:

�̂(k,!) ⌘ F̂ [�(x, t)](k,!) =

Z 1

�1

Z 1

�1
�(x, t)e�2⇡ikx

e

�2⇡i!x
dx dt.

The variables independently satisfy the relations in Problem 2, in particular the derivative
theorem:

F̂ [LKG�](k,!) = F̂
✓

@

2

@t

2
� @

2

@x

2
+ 4⇡2�2

◆
�

�
(k,!)

= 4⇡2
✓
k

2 � !

2 + �

2

◆
�̂(k,!).

Suppose that � is a fundamental solution as per (4). Since F̂ [�(x)�(t)] = F̂ [�(x)]F̂ [�(t)] = 1,
we have

�1 = 4⇡2
✓
k

2 � !

2 + �

2

◆
�̂(k,!)

=) �̂(k,!) = � 1

4⇡2
1

k

2 � !

2 + �

2
.

11. The Schrödinger equation.*

(a) For a linear PDE, we can write the general solution as an integral over (shifted) funda-
mental solutions; this is the continuous analogue of what we do in ODEs. We then pick
the coe�cients of the integral to match our initial conditions. In this case, our initial
condition is  (x, 0). At each x, we place a delta function �(x � ⇠), and evolve them
independently using the fundamental solution:

 0(x) =

Z 1

�1
 0(⇠)�(x� ⇠) d⇠ =)  (x, t) =

Z 1

�1
 0(⇠)�(x� ⇠, t) d⇠.

(b) Let F̂ indicate the Fourier transform with respect to x only. Define �(t) ⌘ �m/2~t. By
the convolution theorem, Problem 3(c), and part (a),

F̂ [ (x, t)](u) = F̂ [ 0 ⇤ �t

](u) = F̂ [ 0](u)F̂ [�
t

](u)

= CN(t)

r
⇡



r
⇡

i�

exp

✓
�⇡

2
u

2



◆
exp

✓
�⇡

2
u

2

i�

◆

= CN(t)
⇡p
i�

exp

✓
�

+ i�

i�

�
⇡

2
u

2

◆
.



Again using Problem 3(c), we can invert this by inspection:

 (x, t) = CN(t)

r
⇡

+ i�

exp

✓
�


i�

+ i�

�
x

2

◆
.

(c) For z = e

x+iy, |z|2 = e

2x. Thus, we need to find the real part of the exponential
coe�cient in (6):

Re


i�

+ i�

�
= Re


i�(� i�)



2 + �

2

�
=

�

2(t)



2 + �

2(t)
.

Finally, we can determine the spread:

�

2(t) =


2 + �

2(t)

4�2(t)
=


2 + (m2
/4~2t2)

4(m2
/4~2t2) =

~2t2
m

2
+

1

4
.

We see that, over time, the wavepacket spreads out.
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Tutorial problems

1. Cross-correlations. The cross-correlation of two functions f and g is defined by

(f ⌦ g)(x) ⌘
Z 1

�1
f

⇤(⇠)g(⇠ + x) d⇠ =

Z 1

�1
f

⇤(⇠ � x)g(⇠) d⇠.

It is a simple way to measure the similarity of two signals f and g, peaking at the o↵sets x

for which the functions are most similar.

(a) Express the cross-correlation as a convolution.

(b) Define f�(x) ⌘ f(�x). Show that

F̂ [f⇤
�] = F

⇤
.

(c) From (a) and (b), prove that the cross-correlation satisfies

F̂ [f ⌦ g] = F

⇤ ·G.

2. The DFT and Fourier series. Consider a sequence ofN complex numbers, x = (x0, x1, . . . , xN�1).
Typically, these numbers are obtained by sampling a continuous function, x

n

= f(t
n

). The
discrete Fourier transform (DFT) is another sequence X = (X0, X1, . . . , XN�1), defined by

X

k

⌘
N�1X

n=0

x

n

e

�i!kn

, ! ⌘ 2⇡

N

.

(a) Verify that the inverse transform is

x

k

=
1

N

N�1X

n=0

X

n

e

i!kn

.

(b) *Generate a sequence x

n

by sampling a function f of period T at intervals T/N :

x

n

⌘ f (✓
n

) , ✓

n

⌘ nT

N

.

Argue that in the limit N ! 1, the DFT is related to the exponential Fourier series for
f as follows:

X

k

�! Tc

k

=

Z
T

0
f(✓)e�i(2⇡/T )k✓

d✓.

3. Autocorrelations. The autocorrelation of a function f is the cross-correlation with itself,
f ⌦ f . Autocorrelations let us look for repeating patterns in a signal over time. Hence, they
can help us filter out noise, which is not correlated with itself over time.



(a) Specialise Problem 1(b) to show that

F̂ [f ⌦ f ] = |F |2.

This is the Wiener-Khinchin theorem. It states that the spectral density |F |2 is the
Fourier transform of the autocorrelation function f ⌦ f .

(b) Let f(x) = sin(2⇡⌫x). Show that F (u) = (i/2)[�(u+ ⌫)� �(u� ⌫)].

(c) Using the results of Problem 4(a), show that

(f ⌦ f)(x) =
1

2
cos(2⇡⌫x).

Hint. You may assume that �(x)2 = �(x) and �(x)�(x0) = 0 for x 6= x

0.

(d) Interpret this result in terms of repeating patterns in the signal f(x) = sin(2⇡⌫x).

4. Lifetime broadening. An atom is excited by collision with a photon of energy E at t = 0.
The lifetime of the excited state is ⌧ , so the probability p(t) of being excited state at time t is

p(t) =

(
e

�t/⌧

t � 0

0 t < 0.

Let P ⌘ F̂ [p]. The uncertainty in the time of emission (due to the finite lifetime of the excited
state) leads to uncertainty in the energy of emitted photons, a phenomenon called lifetime

broadening. The spectral line shape I(u) ⌘ |P (u)|2 measures the range of emitted frequencies.

(a) Show that

I(u) =
1

4⇡2

1

u

2 + �

2
, � ⌘ 1

2⇡⌧
.

Here, � is the decay rate and I(u) is called the Lorentz profile.

(b) Show that the maximum value of I(u) is ⌧

2, and the width of the graph (in u) at half
the maximum value is 2�. Thus, 2� is sometimes called the full width at half-maximum.

5. Bravais lattices and reciprocals. A Bravais lattice R is a periodic array of points. In 2D,
the simplest example is the set of integer linear combinations of basis vectors a1 ⌘ (x1, y1)
and a2 ⌘ (x2, y2):

R ⌘ {n1a1 + n2a2 : n1, n2 2 Z}.

The reciprocal lattice R? is the set of vectors k such that, for any r 2 R,

e

2⇡ik·r = 1. (1)

(a) Let’s consider the 2D Bravais lattice R given above. Define the vectors

b1 ⌘
(�y2, x2)

x2y1 � x1y2
, b2 ⌘

(�y1, x1)

x1y2 � x2y1
.

Check that a
i

· b
j

= �

ij

.

(b) Conclude that R? is a Bravais lattice generated by b1 and b2.



(c) *Consider a function f defined on the lattice R. We can extend the definition to all of
space using Dirac deltas:

f(x) =
X

r2R
cr�(x� r).

Show that the Fourier transform F = F̂ [f ] is periodic on R?. For this reason, the
reciprocal lattice R? is often called the Fourier transform of R. Hint. Shift theorem.

Extra problems

6. Simple signal processing. In digital signal processing, we Fourier transform a signal f ,
apply a filter K, then invert:

f

F̂�! F

K�! KF

F̂�1

�! f

K

⌘ F̂�1[KF ].

Sketch filters which perform the following tasks for sound waves. For simplicity, consider only
positive frequencies:

(a) Pump up the bass (! < !

B

) and decrease the treble (! > !

T

).

(b) Filter out the high-pitched whine of buzzsaw nearby (frequency !

S

, spread �!).

(c) Autotune a voice to a base note !0 and harmonics thereof.

7. Harmonic functions. As discussed in lectures, there is a deep connection between harmonic
and analytic functions: if f(z) = u(z)+iv(z) is analytic, then u(x, y) and v(x, y) are harmonic,
with orthogonal contours (level sets).

(a) Recall that, in polar coordinates, we can write a complex number as z = re

i✓. Assum-
ing that the complex logarithm is analytic, use the connection between analytic and
harmonic functions to deduce that

u(x, y) = log r(x, y), v(x, y) = ✓(x, y)

form a conjugate harmonic pair.1 Draw the level sets and confirm they are perpendicular.

(b) Consider a coaxial cable with outer radius R1 and inner radius R2; these are held at
constant potentials V1 and V2 respectively. Inside the cable there are no charges, so the
potential is harmonic:

r2
V = 0.

Confining your attention to a 2D cross-section of the cable, solve the boundary value
problem. Hint. Use one of the functions in (a).

(c) Without doing it, explain how would you solve Laplace’s equation for V on an infinite
wedge ✓1 < ✓ < ✓2 with specified values V1, V2 on the boundary rays.

8. Whittaker-Shannon sampling theorem.* A function f is bandlimited of width L if its
Fourier transform F is only nonzero on a finite interval of length  L. It turns out that we
can reconstruct f in its entirety from a discrete (though infinite) set of samples. This is called
the Whittaker-Shannon sampling theorem, and this problem steps you through the proof.

1
There are some subtleties to do with ✓(x, y) and analyticity we are sweeping under the rug; they do not a↵ect

the main results of the problem.



(a) Recall the Dirac comb X
T

from Tutorial 1. Show that

F̂ [X
T

] =
1

T

X1/T .

(b) We can sample values of f , at intervals T , simply by multiplying by the Dirac comb:

f

T

(x) = X
T

(x)f(x).

Using the convolution theorem, prove that

F̂ [f
T

] =
1

T

1X

k=�1
F

✓
u� k

T

◆
.

(c) So far, we have assumed nothing about f . If f is bandlimited, argue that sampling at
intervals T  L

�1 separates the individual copies of F in the Fourier transform F̂ [f
T

].
From F , we can reconstruct the entire function f using the inverse Fourier transform!

9. Diagonalisation and eigenbases.* We can view the Fourier transform in the same way
we view an expansion in orthogonal polynomials: expansion in a well-chosen basis for a (very
large) vector space V . In this case, the basis elements are exponentials are rather than
polynomials,

f

�

(u) = e

2⇡i�u
.

Usually, we choose a basis consisting of eigenvectors of some linear operator L : V ! V . This
is the eigenbasis corresponding to L.

(a) Explain why L is said to be diagonal in its eigenbasis.

(b) Find a simple operator L for which the exponentials {f
�

: � 2 R} form an eigenbasis.

10. 3D Bravais lattices.* Consider a Bravais lattice in 3D given by

R ⌘ {n1a1 + n3a3 + n3a3 : n1, n2, n3 2 Z}.

(a) Show that the reciprocal lattice R? has basis vectors

b1 =
a2 ⇥ a3

a1 · (a2 ⇥ a3)
, b2 =

a3 ⇥ a1
a1 · (a2 ⇥ a3)

, b3 =
a1 ⇥ a2

a1 · (a2 ⇥ a3)
.

(b) A simple cubic Bravais lattice of side a has lattice vectors a
i

= ax̂
i

describing the sides
of a cube. Show that the reciprocal lattice is a simple cubic lattice with side length 1/a.

(c) A body-centred cubic (bcc) lattice of side a has basis vectors

a
i

=
a

2
(x̂+ ŷ + ẑ� 2x̂

i

).

A face-centred cubic (fcc) lattice of side a has basis vectors

a
i

=
a

2
(x̂+ ŷ + ẑ� x̂

i

).

Show that the reciprocal of a bcc lattice of side a is an fcc lattice of side 2/a.
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Solutions

1. Cross-correlations.

(a) Comparing the definitions,

(f ⇤ g)(x) ⌘
Z 1

�1
f(⇠ � x)g(⇠) d⇠

(f ⌦ g)(x) ⌘
Z 1

�1
f

⇤(x� ⇠)g(⇠) d⇠,

we see that f ⌦ g = f

⇤
� ⇤ g.

(b) Using basic properties of the complex conjugate,

F

⇤(u) =

Z

�11
e

�2⇡iux
f(x) dx

�⇤

=

Z 1

�1

�
e

�2⇡iux
�⇤
f

⇤(x) dx

=

Z 1

�1
e

2⇡iux
f

⇤(x) dx

= �
Z �1

1
e

�2⇡ius
f

⇤(�s) ds

=

Z 1

�1
e

�2⇡ius
f

⇤
�(s) ds = F̂ [f⇤

�](u).

On the fourth line, we made the change of variable s = �x.

(c) From parts (a), (b) and the convolution theorem,

F̂ [f ⌦ g] = F̂ [f⇤
� ⇤ g] = F̂ [f⇤

�]F̂ [g] = F̂ [f ]⇤F̂ [g] = F

⇤
G.

2. The DFT and Fourier series.

(a) We use the geometric series:

1

N

N�1X

n=0

X

n

e

i!kn =
1

N

N�1X

n=0

N�1X

j=0

x

j

e

i!(k�j)n

=
1

N

N�1X

j=0

x

j

N�1X

n=0

e

i!(k�j)n

= x

k

+
1

N

N�1X

j=0,j 6=k

x

j

1� e

i!(k�j)N

1� e

i!(k�j)
= x

k

.

On the last line, we used the fact that ei!(k�j)N = e

2⇡i(k�j) = 1.



(b) Let’s substitute the definitions of x
n

, ✓
n

into the definition of X
k

:

X

k

=
N�1X

n=0

f (✓
n

) e�i(2⇡/T )k✓n
.

Here, ✓
n

ranges from 0 to T (N � 1)/N , and the step size is �✓ = T/N . As N ! 1, the
sum becomes an integral with �✓ ! d✓. Let’s check the normalisations agree:

N�1X

n=0

�✓ =

Z
T

0
d✓ = T.

Putting it all together,

X

k

�!
Z

T

0
f (✓) e�i(2⇡/T )k✓

d✓ = Tc

k

.

3. Autocorrelations.

(a) Since f = g, F̂ [f ⌦ f ] = F

⇤
F = |F |2.

(b) Here we can use F̂ [1] = �(u) and Problem 6(b)(iii) from Tutorial 3:

F̂ [sin(2⇡⌫x)](u) =
1

2i

⇢
F̂ [e2⇡i⌫x](u)� F̂ [e�2⇡i⌫x](u)

�

=
i

2

⇢
�(u+ ⌫)� �(u� ⌫)

�
.

(c) From the Wiener-Khinchin theorem, the Fourier transform of the autocorrelation is

F̂ [f ⌦ f ] = |F |2 = 1

4

�����(u+ ⌫)2 � 2�(u+ ⌫)�(u� ⌫) + �(u� ⌫)2
����

=
1

4

⇢
�(u+ ⌫) + �(u� ⌫)

�
,

where we used the hints for the last equality. This is just the Fourier transform of
cos(2⇡⌫x)/2, as you can directly verify. Hence,

f ⌦ f =
1

2
cos(2⇡⌫x).

(d) Let T ⌘ ⌫

�1 denote the period of the original sine signal. The result in (c) states that
the autocorrelation (repetition in the signal) peaks for o↵sets 0,±T,±2T, . . .. In other
words, it is periodic with period T ! This hopefully makes sense: a sine signal will match
itself exactly if we shift it backward or forward by a multiple of the period.

You may have observed that the assumption �(x)2 = �(x) is somewhat dodgy; in
fact, using the sifting property, it is easy to see this is false, and �(x)2 is not even a well-
defined distribution. So, there are some infinities (corresponding to infinite integrals)
we are sweeping under the rug! The main point, however, is the periodicity of the
autocorrelation, which remains true even when we include infinities.



4. Lifetime broadening.

(a) First, we calculate P = F̂ [p]:

P (u) =

Z 1

�1
p(t)e�2⇡iut

dt

=

Z 1

0
e

�(2⇡iu+⌧

�1)t
dt

= � 1

2⇡iu+ ⌧

�1


e

�(2⇡iu+⌧

�1)t

�1

0

=
1

2⇡iu+ ⌧

�1
.

Hence,

I(u) = |P (u)|2 = 1

4⇡2
u

2 + ⌧

�2
=

1

4⇡2

1

u

2 + �

2
.

(b) The maximum occurs at u = 0, with I(0) = 1/(2⇡�)2 = ⌧

2. Solving for the half-
maximum,

I(u) =
1

4⇡2

1

u

2 + �

2
=

⌧

2

2
=) u = ±�.

Thus, the full width at half-maximum is 2�.

5. Bravais lattices and reciprocals.

(a) Let’s calculate for a
i

:

a1 · b1 = (x1, y1) ·
(�y2, x2)

x2y1 � x1y2
= 1

a1 · b2 = (x1, y1) ·
(�y1, x1)

x1y2 � x2y1
= 0.

Similarly, a2 · b1 = 0, a2 · b2 = 1, and a
i

· b
j

= �

ij

as claimed.

(b) The Bravais lattice R? is a Bravais lattice generated by b1 and b2:

R? = {m1b1 +m2b2 : m1,m2 2 Z}.

Now we just check using part (a) that R and R? satisfy (1). For arbitrary elements
r = n1a1 + n2a2 2 R and k = m1b1 +m2b2 2 R?,

exp [2⇡ir · k] = exp [2⇡i(n1a1 + n2a2) · (m1b1 +m2b2)]

= exp(2⇡im1n1) exp(2⇡im2n2) = 1.

(c) Using linearity, F̂ [�] = 1 and the shift theorem,

F (u) =
X

r2R
crF̂ [�(x� r)] =

X

r2R
e

2⇡iu·r
cr.



In fact, we have used a version of the shift theorem valid in any number of dimensions,
but if you are more comfortable, feel free to specialise to 1D. For any element k 2 R?,
we then have

F (u+ k) =
X

r2R
e

2⇡i(u+k)·r
cr =

X

r2R
e

2⇡iu·r
e

2⇡ik·r
cr =

X

r2R
e

2⇡iu·r
cr = F (u)

where we used (1). As required, F is periodic on R?.

6. Simple signal processing.

(a) We want to increase the amplitude of frequencies ! < !

B

and decrease the amplitude
for ! > !

T

. So, we want something like:

(b) Here, we simply want to throw away all the spectral information in a band of width �!

centred at !
S

, so we would have:

(c) This is the opposite of (b): we only want to keep certain frequencies. So, our filter will
be a Dirac comb, straining out the frequencies n!0, n = 1, 2, 3, . . .:



7. Harmonic functions.

(a) We assume that the complex logarithm is analytic without worrying too much.2 Then

log z = log(rei✓) = log r(x, y) + i✓(x, y).

Since log is analytic, from the result in lectures, log
p
x

2 + y

2 and ✓(x, y) are harmonic,
and have orthogonal contours. Contours log r = const are circles around the origin,
while ✓ = const are rays from the origin, which are indeed perpenducular:

-10 -5 0 5 10

-10

-5

0

5

10

The more skeptical among you may be worried about invoking the magic of complex
analysis without checking anything. Explicitly, log r(x, y) = log

p
x

2 + z

2 and, at least
in the first quadrant, ✓(x, y) = arctan(y/x). You are invited to verify that these are
harmonic, either by hand or using your favourite symbolic algebra package.

(b) From part (a), we know that log r is harmonic and its level sets are circles (boundaries
of the annulus). Now we just shift and dilate log r so that we satisfy the boundary
conditions:

V (r) = V1 +
(V2 � V1)

log(V2/V1)
log

✓
r

V1

◆
.

(c) From part (a), we know that ✓(x, y) is harmonic and has rays (boundaries of the wedge)
as level sets. Thus, we could repeat the construction in (b), with ✓ instead of log r, to
solve this boundary value problem.

8. Whittaker-Shannon sampling theorem.*

(a) To do the Fourier transform, we first recall the definition of X
T

and its Fourier series
rerpresentation:

X
T

(x) =
1X

k=�1
�(x� kT ) =

1

T

1X

k=�1
e

i(2⇡/T )k✓
.

2
In more advanced applications we do need to be more careful, since there aremany complex logarithms, depending

on the range of ✓ we choose. Another way of saying the same thing is that the complex log is naturally multi-valued!



The Fourier transform is therefore

F̂ [X
T

](u) =
1X

k=�1

Z 1

�1
�(✓ � kT )e�2⇡iux

dx

=
1X

k=�1
e

�2⇡iukT

=
1

T

X1/T (u),

where we used the Fourier transform representation of X1/T on the last line.

(b) From the convolution theorem,

F̂ [f
T

](u) = (F̂ [X
T

] ⇤ F )(u) =
1

T

(X1/T ⇤ F )(u)

=
1

T

1X

k=�1

Z 1

�1
�

✓
⇠ � k

T

◆
F (u� ⇠) d⇠

=
1

T

1X

k=�1
F

✓
u� k

T

◆
.

(c) For a bandlimited function f of width L, if we take a bunch of copies of the Fourier
transform and simply space them out at intervals greater than L, we will be able to
isolate a single copy of F . But that is precisely what F̂ [f

T

] allows us to do! The spacing
of the copies is T�1, so we must choose our sampling rate T

�1 � L, or equivalently, our
intervals T  L

�1. Thus, we can reconstruct f by sampling at a discrete set of points.

9. Diagonalisation and eigenbases.*

(a) Recall that, for finite-dimensional vector spaces, an operator A is diagonal with respect
to a basis (b1, . . . ,bn

), with diagonal entries (d1, . . . , dn), just in case it acts on an
arbitrary linear combination as

A

nX

i=1

↵

i

b
i

=
nX

i=1

d

i

↵

i

b
i

.

This is equivalent to the statement Ab
i

= d

i

b
i

. In other words, each basis vector b
i

is an
eigenvector of A with eigenvalue d

i

. Now consider a function space with basis elements
labelled by R. If we have an eigenbasis {f

�

: � 2 R} of L, with Lf
�

= d

�

f

�

, then

L
Z

f

�

d� =

Z
d

�

f

�

d�.

This is analogous to the finite-dimensional case with an integral replacing the finite sum,
so we say L is diagonal.

(b) A simple choice is the derivative operator D ⌘ d/du:

Df

�

(u) =
d

du

e

2⇡i�u = 2⇡i�f
�

.



10. 3D Bravais lattices.*

(a) As in the 2D case, we will check the result for a1 and invoke symmetry for the rest. We
recall that a · (b⇥ a) = 0. Hence,

a1 · b1 =
a1 · (a2 ⇥ a3)

a1 · (a2 ⇥ a3)
= 1

a1 · b2 =
a1 · (a3 ⇥ a1)

a1 · (a2 ⇥ a3)
= 0

a1 · b3 =
a1 · (a1 ⇥ a2)

a1 · (a2 ⇥ a3)
= 0.

The same calculations repeated twice show that a
i

· b
j

= �

ij

. As in the 2D case, it then
follows that the lattice generated by the b

i

is reciprocal to R.

(b) First, note that the triple product a1 · (a2 ⇥ a3) is just the volume of the parallelepiped
with sides a

i

. In this case, it is a cube of volume a

3. Since a
i

= ax̂
i

, we have

b1 =
1

a

(ŷ ⇥ ẑ) =
1

a

x̂,

and similarly b2 = x̂/a, b3 = ŷ/a. So the reciprocal lattice is simple cubic.

(c) This simple (if slightly messy) calculation is left to the reader. The take-home message
is that reciprocal lattices can be qualitatively di↵erent from the original lattice!
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Tutorial problems

1. Paradigms in optics. There are many di↵erent mathematical models used in optics. For
the following models, (i) explain the main idea of the model, (ii) state its regime of validity,
and (iii) identify an optical phenomenon it doesn’t explain.

(a) geometric optics;

(b) Huygen’s spherical wavelet model;

(c) Fresnel-Huygens model;

(d) classical electromagnetism.

2. Thin lens. Light passes through a thin, circular lens of radius R and is focussed at a point
a distance f away. The refractive index of the lens is n. Consider light passing through the
back of the lens at a vertical distance r from the centre. At this height, the lens has thickness
x(r). Assume that the lens is small (f � R) and thin (r � x).

(a) Why must all rays take the same time to reach the focus? By considering a particular
path, argue that p

R

2 + f

2

c

=
1

c

⇥
nx+

p
r

2 + (f � x)2
⇤
. (1)

(b) Using (1) and the binomial approximation

p
1 + ✏ ⇡ 1 +

1

2
✏, |x| ⌧ 1,

carefully show that the lens has a parabolic thickness profile

x =
R

2 � r

2

2(n� 1)f
. (2)

(c) Sandwich together two thin lenses of radius R, with focal lengths f

1

, f

2

and refractive
index n. Using (2), derive the thin lens formula for the e↵ective focal length f of the
combined lens,

1

f

=
1

f

1

+
1

f

2

.



3. Fresnel zones. Consider a sphere of radius R centred at P

0

, and a point P a distance b

from the surface of the sphere. The nth Fresnel zone (n = 1, 2, . . .) is the set of points on the
sphere such that

b+
(n� 1)�

2
< s < b+

n�

2
,

where s is the distance from P to the point. Put another way, zone boundaries are defined
by an optical path length di↵erence (OPD) of �/2.

(a) Explain in words why we expect destructive interference between adjacent Fresnel zones.

(b) Let N be the total number of Fresnel zones. Show that N satisfies

N  2

�

hp
b(2R+ b)� b

i
< N + 1.

(c) Let rN denote inner radius of the largest zone as it appears to an observer at P . Show
that rN must obey

rN <

R

R+ b

p
b(2R+ b).

4. Plane waves and the Helmholtz equation. Consider the plane wave

 (x, t) = exp
⇥
i(k · x� !t)

⇤
,

where k is the wavevector, ! the angular frequency, and k ⌘ |k|.

(a) Show that, for fixed t,  (x, t) is constant on planes normal to k.

(b) By considering a point of constant phase, and assuming the waves travel in direction k̂,
show that the plane waves travel with speed v = !/k.

(c) Verify that  (x, t) satisfies the Helmholtz equation

(r2 + k

2) = 0.

(d) Using the foregoing (or otherwise), deduce that  satisfies the wave equation

r2

 =
1

v

2

@

2

@t

2

 .



Extra problems

5. Fresnel lens. A Fresnel lens is a means of constructing a large lens with a well-defined focal
length f and maximum thickness d. We start with a circular lens of radius R

1

, and construct
concentric rings of outer radius Rk around the central lens.

(a) Using (2), derive the recurrence relation for Rk:

R

1

=
p
2fd(n� 1), Rk+1

=
q
R

2

k + 2fd(n� 1).

(b) Solve the recurrence and show that Rk scales as
p
k.

(c) Using part (b), deduce that in the limit k ! 1, the width �Rk+1

⌘ Rk+1

� Rk of the
kth concentric ring obeys

�Rk '
r

fd(n� 1)

2k
.

6. Schuster’s trick. Schuster’s trick is used to evaluate the alternating sum arising from the
Fresnel zones. For a finite sequence K

1

, . . . ,KN , define

⌃ ⌘ K

1

�K

2

+K

3

�K

4

+ . . .+ (�1)N+1

KN .

Assume that N is even and 2Kn < Kn�1

+Kn+1

for 1 < n < N .

(a) Following lectures, show that

1

2
(K

1

�K

2

) < ⌃+
1

2
(KN �K

1

) <
1

2
(KN�1

�KN ).

(b) From (a), infer that if K
1

⇡ K

2

and KN�1

⇡ KN , then

⌃ ⇡ 1

2
(K

1

�KN ).

(c) *For Kn = n

2, first check that 2Kn < Kn�1

+ Kn+1

. If N = 2m is even, the exact
(alternating) sum is

⌃
2m = �m(2m+ 1).

Show that as m ! 1,
⌃
2m

1

2

(K
1

�K

2m)
! 1.

In asymptotic notation, this is written ⌃
2m ⇠ (K

1

�K

2m)/2. The error grows linearly
with m, but this is much slower than the sums themselves!

7. Inscribed polygons. Take a circle, and pick n points on the boundary. Now join adjacent
points to form an n-gon. Using mirrors, a laser, and Fermat’s principle, show that the n-gon
with minimal perimeter is the regular n-gon.
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Solutions

1. Paradigms in optics.

(a) (i) Light consists of massless particles whose trajectory is governed by Fermat’s principle.

(ii) Geometric optics is valid for plane waves when the wavelength of light is much larger
than the structures it interacts with.

(iii) Di↵raction. The assumption about wavelength breaks down, and the wavelike nature
of light comes to the fore.

(b) (i) Light is a wave disturbance; the envelope of the disturbance is called the wavefront,
and each point on the wavefront is a source of secondary spherical waves, or wavelets.

(ii) Huygens’ model is valid when interference can be ignored.

(iii) Interference! This requires information about the phase of the wave which Huygen’s
wavelet theory neglects.

(c) (i) Light is a spreading wavefront with phase as well as amplitude.

(ii) Valid when only the scalar aspect of the wave (amplitude and phase) is important,
e.g. di↵raction theory.

(iii) Polarisaton, or any other phenomenon where the vector nature of light becomes
important.

(d) (i) Light is electromagnetic radiation: a solution to Maxwell’s equation taking the form
of orthogonal, self-propagating electric and magnetic fields.

(ii) The classical interpretation of Maxwell’s equations breaks down when quantum
mechanics comes into play.

(iii) The single photon double-slit experiment. We need to think of photons as individual
quanta, and the intensity as a probability distribution, to explain this one.

2. Thin lens.

(a) The light must interfere constructively at the focus. If the passage times are di↵erent,
there will be phase di↵erences leading to destructive interference. To find the common
passage time, we consider a ray travelling from r = R (the top of the lens) to the focus:

TR =

p
R

2 + f

2

c

.

Now for an arbitrary r. The distance travelled through the lens is x, and the distance
in air is

p
r

2 + (f � x)2. Since the speed in the lens is c/n, and the speed in air is c, the
time is

Tr =
nx

c

+
1

c

p
r

2 + (f � x)2.

Since the passage time is common, TR = Tr and we have the desired identity (1).



(b) Moving all the terms to one side, we get

0 = nx+
p
r

2 + (f � x)2 �
p
R

2 + f

2

= nx+ f

s✓
r

f

◆
2

+

✓
1� x

f

◆
2

� f

s✓
R

f

◆
2

+ 1

= nx+ f

s

1� 2x

f

+
r

2 + x

2

f

2

� f

s

1 +

✓
R

f

◆
2

.

The lens is small and thin, so f � R � r � x(r). Using these approximations, and the
binomial approximation for the square root:

0 = nx+ f

s

1� 2x

f

+
r

2 + x

2

f

2

� f

s

1 +

✓
R

f

◆
2

⇡ nx+ f

s

1� 2x

f

+
r

2

f

2

� f

s

1 +

✓
R

f

◆
2

⇡ nx+ f +
f

2

✓
r

2

f

2

� 2x

f

◆
� f � f

2

✓
R

f

◆
2

= (n� 1)x+
r

2 �R

2

2f
.

Rearranging, we obtain the parabolic profile

x(r) =
R

2 � r

2

2(n� 1)f
.

(c) The trick is simply to note from (2) that x = ↵/f , where ↵ is a constant depending on
R and n. The thickness of the combined lens is therefore

1

f

=
x

↵

=
x

1

+ x

2

↵

=
1

f

1

+
1

f

2

.

You might worry that we are treating a biconvex lens, curved on both sides, as a simple
lens with the same thickness profile. For our idealised thin lenses, the di↵erence is
negligible.

3. Fresnel zones.

(a) By definition, rays from the boundaries of the Fresnel zones have a half-wavelength OPD
and interfere destructively. Similarly, for each ray leaving a Fresnel zone, we can match
it to a ray with half-wavelength OPD in either adjacent Fresnel zone. So in general,
adjacent zones destructively intefere.

(b) The maximum OPD tells you the total number of Fresnel zones. The shortest path from
P to the sphere has length b, while the longest (see the diagram) has length

p
(R+ b)2 �R

2 =
p

b(2R+ b).

The number of half-wavelengths (�/2) contained in the maximum OPD is the total
number of Fresnel zones N , so

N  2

�

hp
b(2R+ b)� b

i
< N + 1.



(c) To find the inner radius rN , we must project the inner boundary of the last Fresnel zone
onto a plane perpendicular to the line from P to P

0

. Call the maximum projected radius
r

max

; clearly, we must have rN < r

max

. Using similar triangles (see diagram):

r

max

R

=

p
b(2R+ b)

R+ b

.

Hence,

rN < r

max

=
R

R+ b

p
b(2R+ b).

4. Plane waves and the Helmholtz equation.

(a) Recall from linear algebra that planes normal to a vector k are given by

k · x = d

for some constant d. Thus, for fixed t, on these planes  is a constant:

 (x, t) = exp [i(k · x� !t)] = exp [i(d� !t)]

(b) To see how fast the waves move, follow a point of fixed phase as the wave moves over
unit time. For instance, at t = 0, the phase at the origin is

i(k · x� !t) = 0.

The wave propagates in direction k̂. At time t = 1, it has moved a distance v, where v

is the speed. By setting the phase to zero (remember, we are trying to see how fast a
point of constant phase moves), we can solve for v:

0 = i(k · x� !t) = i(vk · k� !) = i(vk � !).

Hence, v = !/|k|.
(c) Since k · x = kjxj , we have

@

2

@x

2

 = (ik
1

)2 = �k

2

1

 ,



and similarly for y and z. It follows that

r2

 = �(k2
1

+ k

2

2

+ k

2

3

) = �k

2

 .

Thus,
(r2 + k

2) = 0.

(d) From the Helmholtz equation,r2

 = �k

2

 . However, twice taking the partial derivative
with respect to time, we obtain

 ̈ = (i!)2 = �!2

 .

Since v = !/k, we can assemble these two identities into a wave equation:

r2

 = �k

2

 =
1

v

2

(�!2

 ) =
1

v

2

 ̈.

5. Fresnel lens.

(a) See lecture notes.

(b) First of all, we guess that Rk (the outer radius) scales as
p
k, with Rk =

p
↵k for some ↵.

From R

1

, we must have ↵ = 2fd(n�1). Let’s check if this choice satisfies the recurrence:

Rk+1

=
p
↵(k + 1) =

p
↵k + ↵ =

q
R

2

k + 2fd(n� 1).

It does! So, as claimed, the outer radii scale as
p
k.

(c) From (b), the width of the kth annulus is

�Rk+1

=
p
↵(

p
k + 1�

p
k) =

p
↵

k + 1� k

p
k + 1 +

p
k

=

p
↵

p
k + 1 +

p
k

.

In the limit k ! 1, the di↵erence between k � 1 and k is negligible, so

�Rk =

p
↵p

k +
p
k � 1

⇡
r

fd(n� 1)

2k
.

6. Schuster’s trick.

(a) Since N is even and 2Kn < Kn�1

+Kn+1

, from lecture notes we have

⌃ <

1

2
K

1

+
1

2
K

1

�KN

⌃ > K

1

� 1

2
K

2

� 1

2
KN .

We can rearrange to obtain the desired inequality:

1

2
(K

1

�K

2

) < ⌃+
1

2
(KN �K

1

) <
1

2
(KN�1

�KN ).



(b) If K
1

⇡ K

2

and KN�1

⇡ KN , then the LHS and RHS of the inequality in (b) are small.
The middle term must also be small, or equivalently,

⌃ ⇡ 1

2
(K

1

�KN ).

(c) First, we check our assumption about the growth of the sequence:

Kn�1

+Kn+1

� 2Kn = (n� 1)2 + (n+ 1)2 � 2n2

= (2n2 � 2n+ 1) + (2n2 + 2n+ 1)� 2n2

= 2 > 0.

Hence, Kn�1

+Kn+1

> 2Kn as required. Schuster’s approximation for ⌃
2m is

1

2
(K

1

�K

2m) =
1

2
(1� 4m2).

As m ! 1, the ratio is therefore

⌃
2m

1

2

(K
1

�K

2m)
=

4m2 + 2m

4m2 � 1
=

1 + 1

2m

1� 1

4m2

! 1.

7. Inscribed polygons. Suppose the boundary of the circle is reflective, and place it in a
vacuum. Shoot a laser from one of the n vertices and demand it return to the same point
(initial and final point specified).

By Fermat’s principle, the path taken by light minimises the time; since it is travelling in
vacuum, this is equivalent to minimising the perimeter of the shape described by the path.
But since light travels in straight lines, and the angle of incidence equals the angle of reflection,
the minimal perimeter n-gon is regular. (Technically, the argument also allows for stellated
polygons, but these clearly have larger perimeters than the regular polygons.)
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Tutorial problems

1. Propagating plane waves. Consider the spatial part of a plane wave of wavelength �,

p(r) = exp(ik · r) = exp(2⇡iu · r), u ⌘ k

2⇡
.

Recall that |k| = 2⇡/�, so |u| = 1/�. Set u? = (u
x

, u

y

) and r? = (x, y).

(a) Show that

p(r?, z) = exp(2⇡iu? · r?) exp

2⇡i��1

z

q
1� �

2
u

2
?

�
.

(b) Take a slice of the wave at z = 0. Explain how lines of zero phase depend on u?.

(c) Let  (r?, z) be a monochromatic wave packet, with � as above, and  ⌘ F̂ [ (r?, 0)]
the spatial Fourier transform of  in the z = 0 plane. Assume the wave is travelling in
the z-direction, with  (u?) = 0 for �u? > 1.

Since each plane-wave component evolves independently via (a), show that

 (r?, z) =

Z
du? (u?) exp(2⇡iu? · r?) exp


2⇡i��1

z

q
1� �

2
u

2
?

�
.

2. Fresnel and Fraunhofer. Consider a monochromatic wavepacket as in Problem 1(b). If the
paraxial approximation u

2
? ⌧ u

2 holds for all nonzero spectral components, we can propagate
the wavepacket foward in the z direction. To go from z = z1 to z = z2 (with Z = z2 � z1),
we have

 (r?, z2) =

Z
dr0?K(r?, z2; r

0
?, z1) (r

0
?, z1), (1)

where K is the Fresnel propagator :

K(r?, z2; r
0
?, z1) ⌘

1

i�Z

exp(ikZ) exp


i⇡(r? � r0?)

2

�Z

�
.

We also denote r? = (x, y) and r0? = (x0, y0).

(a) Express Fresnel propagation as a 2D convolution.

(b) Consider the far-field regime (aka Fraunhofer approximation), where the Fresnel integral
(1) vanishes unless

|r0?|2 ⌧ �Z.

Show that, in this case, the Fresnel integral reduces to a Fourier transform with phase
factors:

 (r?, z2) =
exp(ikZ)

i�Z

exp


i⇡|r?|2
�Z

�
F̂ [ (r0?, z1)](ux, uy)

where u
x

⌘ x/�Z and u

y

⌘ y/�Z. When we calculate di↵raction patterns, we only want
the intensity | |2 and the phase factors go away.



3. Far-field rectangles. Obstructions in the object plane at z = 0 form far-field di↵raction
(i.e. intensity) patterns when illuminated by a monochromatic plane wave of wavelength �

and amplitude A. Find the exact form of the di↵raction pattern at z = Z for the following
apertures:

(a) a rectangle with dimensions a⇥ b;

(b) an opaque square of side length a in the middle of a square hole of side length b (b > a).

4. Simple image processing. You can process or filter a monochrome image in an analogue
way as follows: (1) put a transparency behind a lens, (2) illuminate both with a plane wave,
(3) apply a filter in the focal plane Z = f , then (4) use another lens at Z = 2f to recover
a flipped, processed version of the image. (Hopefully you remember this from second year
labs.) Match the processed image of Einstein in the first column to the filter in the second:



Extra problems

5. Lenses. Position an object in front a lens and illuminate the lens and object from behind with
a plane wave. The wave passes through the lens, then the object, and creates a di↵raction
pattern.

(a) Without the lens, where would the rays focus?

(b) Using part (a) and Problem 2(b), give a heuristic argument that the di↵raction pattern
in the focal plane is simply related to the Fourier transform of the light emerging from
the object. In other words, a lens is an analogue Fourier transformer!

(c) *It can be shown that light passing through a lens with focal length f undergoes a phase
transformation

T

l

(r0?) = exp


� i⇡|r0?|2

�f

�
.

Given this fact, demonstrate that Fresnel di↵raction for the combined transmittance T
l

 

is equal to far-field di↵raction for  when Z = f . This is a rigorous version of (b)!

6. Array theorem. Suppose we take an opaque screen at z = 0, and several identically shaped,
non-overlapping holes called an array. The amplitude transmittance for an individual hole is
T (x, y), and the holes are centred at x

j

= (x
j

, y

j

) for j = 1, . . . , n.

(a) Write the transmittance T

A

of the array by convolving T with a sum of delta functions.

(b) Using properties of Fourier transforms (Tutorial 3), show that

F̂ [T
A

](u
x

, u

y

) = F̂ [T ](u
x

, u

y

)
nX

j=1

e

�2⇡i(x
j

u

x

+y

j

u

y

)
.

Applied to far-field di↵raction, this result is called the array theorem.

(c) *Apply the array theorem to find the far-field di↵raction pattern due to n slits of width
a and infinite height, uniformly spaced at intervals d > a.

7. Babinet’s principle. Let A be an obstruction in the object plane at z = 0, and B the
complementary obstruction. (Think of cutting A out of an infinite opaque sheet, leaving
B.) Babinet’s principle states that, for u? 6= 0, the Fourier transform of the transmittance
functions F

A

, F
B

satisfies
F

A

(u?) = �F

B

(u?).

(a) A human hair is placed on a glass plate and illuminated with a handheld laser (� =
671 nm). A di↵raction pattern (stripes parallel to the hair) is observed on a screen 1 m
away, with the first minimum a distance 6.7 mm from the centre of the pattern. Use
Babinet’s principle to estimate the width of the hair.

(b) Generalise Babinet’s principle to a set of non-overlapping apertures A

i

, i = 1, . . . , n
whose union covers the image plane.



8. Paraxial wave equation. For a wave propagating in the z-direction (with only weak di-
vergence), it’s natural to factor it into a plane wave moving in the z direction and a planar
envelope function controlling variation in the transverse plane:

 (r) =  ̃(r?, z)e
ikz

.

The Helmholtz equation for  is
(r2 + k

2) = 0.

Combining the two equations, and assuming that the planar envelope is a slowly-varying
function of z (|@2

z

 ̃| ⌧ k|@
z

 ̃|), we obtain the paraxial wave equation for  ̃:

r2

? + 2ik
@

@z

�
 ̃ = 0. (2)

(a) Show that, formally speaking, (2) can be written as a 2D di↵usion equation with di↵usion
coe�cient D = 1/2k and imaginary time t = iz.

(b) Conclude that the fundamental solution to (2) is

 ̃(r?, z) =
k

2⇡iz
exp


ik|r?|2

2z

�
.

(c) On Level 6 of the physics building, Professor Quiney does imaging with X-rays and
Professor Allen does imaging with electrons. The two have a long-running dispute about
which is superior. In fact, the di↵erent methods of imaging are governed by the same
mathematics! Show that the paraxial wave equation is identical to the Schrödinger
equation for a free particle in 2D, with z = t and mass m = ~k.

9. Circular holes and Airy patterns.* Consider the di↵raction setup of Problem 3 with a
circular aperture of radius R. To find the far-field di↵raction pattern, we need to Fourier
transform the transmittance function in radial coordinates:

f(r) =

(
1 0  r  R

0 R < r.

(a) Write the Fourier integral in polar coordinates, using (r, ✓) in the object plane and (⇢,�)
in Fourier space. You should find

F (⇢,�) =

Z 1

0
dr rf(r)

Z 2⇡

0
d✓ exp(�2⇡ir⇢ cos(✓ � �)).

(b) Using the Bessel function identities

J0(�) =
1

2⇡

Z 2⇡

0
d✓ exp(�i�✓)

�J1(�) =

Z
�

0
sJ0(s) ds,

simplify the result in (a) to obtain

F (⇢, ✓) =
R

⇢

J1(2⇡⇢R).



(c) Conclude that the far-field di↵raction pattern at z = Z is

I(r) = 4I0⇡
2
R

4


J1(⇡)

⇡

�2
,  ⌘ 2Rr

�Z

where I0 = A

2 is, as usual, the intensity of the illuminating plane wave. This is called
the Airy pattern.

(d) The function [J1(⇡)/(⇡)]2 has a minimum at  = 1.22. Argue that the width d of the
central lobe in the Airy pattern in (c) is therefore

d = 1.22
�Z

R

.

This is the basis of the Rayleigh criterion for the resolution of an optical system.

10. Hankel transforms.* Suppose g(r) is a function which only depends on radial distance from
the origin. The m-th order Hankel transform of g(r) is like a Fourier transform, but weighted
by the m-th Bessel function of the first kind J

m

instead of a plane wave:

Ĥ
m

[g(r)](⇢) = 2⇡

Z 1

0
dr rg(r)J

m

(2⇡r⇢).

You can regard the functions J
m

as “black boxes” whose defining properties we will specify as
we need. For separable functions in polar coordinates, we can express the Fourier transform
in terms of Hankel transforms.

(a) Suppose that in polar coordinates, the function g(x, y) takes the specific form

g(r, ✓) = R(r)eim✓

, m 2 Z.

Show that the Fourier transform G = F̂ [g] may be written in terms of the Hankel
transform as

G(⇢,�) = (�i)me

im�Ĥ
m

[R](⇢),

where (⇢,�) are polar coordinates in Fourier space. You will need the following identity
for Bessel functions:

exp(ia sin�) =
1X

k=�1
J

k

(a)eik�.

(b) Now consider an arbitrary separable function g(r, ✓) = R(r)⇥(✓). Use part (a) to show
that,

G(⇢,�) =
X

k2Z
c

k

(�i)keik�Ĥ
k

[R](⇢),

for

c

k

=

Z 2⇡

0
d✓ e

�ik✓⇥(✓).
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Solutions

1. Propagating plane waves.

(a) We have

u

2 = �

�2 = u

2
? + u

2
z

=) u

z

= u

q
1� �

2
u

2
?.

Hence,

exp(2⇡iu · r) = exp(2⇡iu? · r?) exp(2⇡iuzz)

= exp(2⇡iu? · r?) exp

2⇡i��1

z

q
1� �

2
u

2
?

�

as required.

(b) At z = 0, lines of zero phase correspond to u? · r? = u

x

x+u

y

y = n for integer n. These
lines have slope u

x

/u

y

and separation u

�1
? .

(c) From the definition of  ,

 (r?, 0) =

Z
du? (u?) exp(2⇡iu? · r?).

Using part (a) to propagate each plane wave component forward, and the assumption
that  (u?) = 0 for �u? > 1, we deduce that

 (r?, z) =

Z
du? (u?) exp(2⇡iu? · r?) exp


2⇡i��1

z

q
1� �

2
u

2
?

�
.

2. Fresnel and Fraunhofer.

(a) First, we note that the Fresnel kernel K only depends on r? � r0?. Hence, we can define

 

z

(r?) ⌘  (r?, z), K

z2,z1(r? � r0?) ⌘ K(r?, z2; r
0
?, z1).

It follows that

 (r?, z2) =

Z
dr0?K

z2,z1(r? � r0?) z1(r
0
?)

= (K
z2,z1 ⇤  z1)(r?).

In fact, the Fresnel propagator is a Green’s function, as encountered in our discussion of
PDEs earlier in the course. In optics, it is called a point-spread function rather than a
Green’s function.



(b) First, we need to simplify the Fresnel propagator using the far-field assumption:

K(r?, z2; r
0
?, z1) =

1

i�Z

exp(ikZ) exp


i⇡(r? � r0?)

2

�Z

�

=
1

i�Z

exp(ikZ) exp


i⇡|r?|2 + |r0?|2 � 2r? · r0?

�Z

�

=
1

i�Z

exp(ikZ) exp


i⇡|r?|2
�Z

�
exp


i⇡|r0?|2
�Z

�
exp

�2⇡i(xx0 + yy

0)

�Z

�

⇡ 1

i�Z

exp(ikZ) exp


i⇡|r?|2
�Z

�
exp

⇥�2⇡i(u
x

x

0 + u

y

y

0)
⇤

where u

x

⌘ x/�Z and u

y

⌘ y/�Z. Substituting into (1), we obtain

 (r?, z2) ⇡ 1

i�Z

exp(ikZ) exp


i⇡|r?|2
�Z

� Z
dr0?  (r

0
?, z1) exp [�2⇡i(u

x

x+ u

y

y)]

=
1

i�Z

exp(ikZ) exp


i⇡|r?|2
�Z

�
F̂ [ (r0?, z1)](ux, uy).

3. Far-field rectangles.

(a) In this case, the transmittance T1 is just a product of rect functions, say

T1(x, y) = rect
⇣
x

a

⌘
rect

⇣
y

b

⌘
.

The far-field amplitude is proportional to the Fourier transform F̂ [T1]. Since the func-
tion is separable in Cartesian coordinates, the Fourier transform factors into separate
transforms in x and y. Finally, we use the Fourier transform of the rect and the similarity
theorem:

F̂ [T1](ux, uy) = F̂
h
rect

⇣
x

a

⌘i
(u

x

)F̂
h
rect

⇣
y

b

⌘i
(u

y

)

= ab sinc(au
x

)sinc(bu
y

).

Hence, the di↵raction pattern in the image plane at z = Z is

I(x, y) = I0|F̂ [T1](x/�Z, y/�Z)|2 = I0x
2
y

2

(�Z)4
sinc2

⇣
ax

�Z

⌘
sinc2

✓
by

�Z

◆

where I0 = A

2 is the intensity of the illuminating plane wave. There is a cartoon of the
pattern below, courtesy of Mathematica:

(b) The transmittance function is now

T2(x, y) = rect
⇣
x

b

⌘
rect

⇣
y

b

⌘
� rect

⇣
x

a

⌘
rect

⇣
y

a

⌘
.

We can use part (a) and the linearity of the Fourier transform:

F̂ [T2](ux, uy) = b

2 sinc(bu
x

)sinc(bu
y

)� a

2 sinc(au
x

)sinc(au
y

).

I leave squaring this to your imagination. Again, we draw a cartoon version below.



4. Simple image processing. 1 ! 2: The slit mask allows through spectral information about
vertical frequency, and filters out almost everything else. That is why the image is blurred in
the horizontal directions; most of that information has been lost.

2 ! 3: This is a low-pass filter. It gets rid of high frequency information, leaving only blurry,
slowly changing spectral components.

3 ! 1: This is a high-pass filter. It gets rid of low frequency components (large patches of
colour), leaving only rapidly changing parts of the image. For this reason, high-pass filters
are used for edge detection.

5. Lenses.

(a) At “infinity”, since they remain parallel forever.

(b) Infinitely far away, we would get far-field, Fraunhofer di↵raction. Since the lens e↵ec-
tively relocates infinity to the focal plane, it stands to reason that the di↵raction pattern
formed there is Fraunhofer.

(c) *Going through the argument in Problem 2(b), we see that all we need to do to change
Fresnel to Fraunhofer di↵raction is get rid of the factor

T

l

(r0?) = exp


i⇡|r0?|2
�Z

�

in the Fresnel propagator K(r?, z2; r0?, z1). The far-field approximation is one way to
do it, but the phase factor from the lens also works perfectly! See the lecture notes for
further details.

6. Array theorem.

(a) Convolving with a delta function �(x� x0)�(y � y0) simply shifts a function to (x0, y0),
so convolving with a sum S of appropriately centred deltas will give us a sum of shifted
copies:

T

A

= T ⇤ S, S(r) ⌘
nX

j=1

�(r� x
j

).



(b) Using the convolution and shift theorems from Tutorial 3,

F̂ [T
A

](u
x

, u

y

) = F̂ [T ⇤ S](u
x

, u

y

) = F̂ [T ](u
x

, u

y

)F̂ [S](u
x

, u

y

)

= F̂ [T ](u
x

, u

y

)
nX

j=1

F̂ [�(r� x
j

)](u
x

, u

y

)

= F̂ [T ](u
x

, u

y

)
nX

j=1

e

�2⇡i(x
j

u

x

+y

j

u

y

)
.

(c) Orient the slits in the y-direction. The slit transmittance is just a rect function:

T (x, y) = rect
⇣
x

a

⌘
.

Write the position of the slits as x
j

= (dj, 0) for j = 1, . . . , n, though the result will be
the same if we shift these up or down in the y-direction a fixed amount. Thus, from the
array theorem and our results for the rect function, the relevant Fourier transform is

F̂ [T ](u
x

, u

y

)
nX

j=1

e

�2⇡i(x
j

u

x

+y

j

u

y

) = a sinc(au
x

)
nX

j=1

�
e

�2⇡idu
x

�
j

= a sinc(au
x

)
z

(n+1)/2

z

�1/2

z

�(n+1)/2 � z

(n+1)/2

z

�1/2 � z

1/2
z ⌘ e

�2⇡idu
x

= a e

�⇡(n+2)idu
xsinc(au

x

)
sin[⇡du

x

(n+ 1)]

sin[⇡du
x

]
.

Thus, the di↵raction pattern is

I(x) = I0a
2 sinc2

⇣
ax

�Z

⌘ sin2[⇡dx(n+ 1)/�Z]

sin2[⇡dx/�Z]
.

This is the pattern from an idealised n slit di↵raction, with a sinc envelope due to the
finite width of individual slits. For instance, here is the pattern for d = 2a, n = 5:



7. Babinet’s principle.

(a) Let w be the width of the hair. From Babinet’s principle, the far-field di↵raction pattern
from the hair is practically identical to the pattern from an aperture of the same width.
Using calculations from lectures or Problem 2(a), the di↵raction pattern of a slit of width
w is proportional to sinc2(wx/�L). Since the first zero of sinc(t) occurs t = 1, and the
first minimum in the di↵raction pattern occurs at x = 6.7 mm, we have

wx

�L

= 1 =) w =
�L

x

=
671 nm⇥ 1 m

6.7 mm
⇡ 100µm.

If you have a laser pointer handy, you can actually try this at home!

(b) Suppose each aperture A

i

has transmittance T

i

. By definition, the combined transmit-
tance of the apertures is always unity, since at each point, it is 1 over some aperture A

i

and zero elsewhere:
nX

i=1

T

i

= 1.

Now split an incoming wave  into patches emerging from each aperture:

 =
nX

i=1

T

i

 =
nX

i=1

 

i

.

A simple generalisation of the argument from lectures shows that

nX

i=1

F̂ [T
i

](u?) = 0, u? 6= 0.

8. Paraxial wave equation.

(a) The di↵usion equation in 3D is
@ ̃

@t

= Dr2
? ̃.

Making the substitutions D = 1/2k and t = �iz, we recover the paraxial wave equation:

2ik
@ ̃

@z

= r2
? ̃.

(b) We simply substitute D = 1/2k and t = �iz into the fundamental solution for the wave
equation in 2D,

�(x, y, t) =
1

4⇡Dt

exp


�x

2 + y

2

4Dt

�
.

(c) This is a similar exercise to (a). The 2D Schrödinger equation for a free particle of mass
m is

i~ @
@t

 ̃ = � ~2
2m

r2
? ̃.

After a little algebra, we see this is identical to the paraxial wave equation for m = ~k
and z = t.



9. Circular holes and Airy patterns.*

(a) First, convert the polar coordinates in Fourier space (⇢,�) to Cartesian coordinates:

u

x

= ⇢ cos�, u

y

= ⇢ sin�.

Now we just plug these into the usual definition, change to polar coordinates

x = r cos ✓, y = r sin ✓,

and use a double angle formula:

F (⇢,�) = F̂ [f ](⇢ cos�, ⇢ sin�)

=

Z 1

�1
dx dy f(

p
x

2 + y

2) exp [�2⇡i⇢(x cos�+ y sin�)]

=

Z 1

0
dr rf(r)

Z 2⇡

0
d✓ exp [�2⇡i⇢r(cos ✓ cos�+ sin ✓ sin�)]

=

Z 1

0
dr rf(r)

Z 2⇡

0
d✓ exp [�2⇡i⇢r cos(✓ � �)] .

(b) Making the change of variables # = ✓�� in the ✓ integral (and exploiting the periodicity
of cosine), followed by the first Bessel function identity, we get

F (⇢,�) =

Z 1

0
dr rf(r)

Z 2⇡

0
d# exp [�2⇡i⇢r cos#]

= 2⇡

Z 1

0
dr rf(r)J0(2⇡⇢r)

= 2⇡

Z
R

0
dr rJ0(2⇡⇢r).

We can make the change of variable s = 2⇡⇢r and use the second Bessel function identity:

F (⇢,�) =
1

2⇡⇢2

Z 2⇡⇢R

0
ds sJ0(s) =

R

⇢

J1(2⇡⇢R).

(c) Under the usual substitutions u

x

= x/�Z, u
y

= y/�Z, the polar variable ⇢ = r/�Z.
Now we substitute into the result from (b) and square to get the intensity of the far-field
di↵raction pattern:

I(r) = I0|F (r/�Z)|2

= I0

����2⇡R
2J1(⇡)

⇡

����
2

= 4I0⇡
2
R

4


J1(⇡)

⇡

�2
,

where  ⌘ 2Rr/�Z. Here is a graph of the Airy pattern:



(d) The width d of the central lobe is given by

1.22 =  =
2Rr

�Z

=) d = 2r = 1.22
�Z

R

.

10. Hankel transforms.*

(a) Using the same strategy as Problem 9(a):

G(⇢,�) =

Z 1

0
dr rR(r)

Z 2⇡

0
d✓ e

im✓ exp [�2⇡i⇢r cos(✓ � �)]

=

Z 1

0
dr rR(r)

Z 2⇡

0
d✓ e

im✓ exp [2⇡i⇢r sin(�� ✓ � ⇡/2)] .

Usung the identity for Bessel functions, we obtain

G(⇢,�) =

Z 1

0
dr rR(r)

Z 2⇡

0
d✓ e

im✓

1X

k=�1
J

k

(2⇡⇢r) exp[ik(�� ✓ � ⇡/2)]

=
1X

k=�1
(�i)keik�

Z 1

0
dr rJ

k

(2⇡⇢r)R(r)

Z 2⇡

0
d✓ e

i(m�k)✓

=
1X

k=�1
(�i)keik��

mk

· 2⇡
Z 1

0
dr rJ

k

(2⇡⇢r)R(r)

= (�i)me

im�Ĥ
m

[R](⇢).

Along the way, we used the fact that e�i⇡/2 = �i and

1

2⇡

Z 2⇡

0
d✓ e

i(m�k)✓ = �

mk

.

(b) Since ⇥(✓) is a function of polar angle, it is periodic with period T = 2⇡. Hence, it has
an exponential Fourier series

⇥(✓) =
1X

k=�1
c

k

e

ik✓

.



Thus, we can write

g(r, ✓) =
1X

k=�1
c

k

e

ik✓

R(r).

Using the linearity of the Fourier transform and part (a), we obtain

G(⇢,�) = F̂ [g](⇢,�) =
1X

k=�1
c

k

F̂ [eik✓R(r)](⇢,�)

=
1X

k=�1
c

k

(�i)keik�Ĥ
k

[R](⇢).

Plugging in the definition for the exponential Fourier coe�cients c
k

of ⇥(✓) gives us the
final result.


