
PHYC20014 Physical Systems

Classical Mechanics: Tutorial 1 Supplementary Problems

1. The Variational Biathlon. The Variational Biathlon is held at the beach and consists
of two events. In Event 1, participants run as quickly as possible between two designated
points on the sand, touching the shoreline en route. In Event 2, they start on the beach and
race to a target point in the water using a combinaton of swimming and running. Athletes
run at speed v1 on the sand, and swim at speed v2 in the water. You will determine the
winning strategies!

(a) Argue that for trips confined entirely to one medium (sand or water), athletes should
travel in straight lines.

(b) In the first event (see above), athletes run from P (0, a) to Q(`, b), touching the straight
shoreline (y = 0) in between. Let R(r, 0) denote the point they touch the shoreline,
with r to be determined. Show that the travel time is minimised when
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2
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(c) Dusting o↵ your high school trig, show that (1) implies ✓1 = ✓2 in the figure above.

(d) Solve (c) using part (a) alone.

(e) Now consider the second event (pictured above). Athletes must get from point P (0, a)
on the beach to Q(`,�b) in the water, crossing from beach to ocean at R(r, 0) for some
r. Show that their travel time is minimised when
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and hence deduce that
v

�1
1 sin ✓1 = v

�1
2 sin ✓2.



2. POLA and mechanical energy.* The mechanical energy of the true path of a system
can be calculated from the action in a slightly unexpected way. This insight turns out to be
quite deep — in fact, it points the way to quantum mechanics — but we won’t explore that
here.

(a) Show from the POLA that the total mechanical energy E at the start of the trajectory
satisfies

@Strue

@t1
= E(t1)

for a general one-dimensional Lagrangian

L =
1

2
mẋ

2 � V (x).

Hint. Consider separate infinitesimal changes to the starting time t1 ! t1 + �t and
path x(t) ! x(t) + �x(t), where �x vanishes at t2 but not necessarily at t1. Combine
your results using the relation between total and partial derivatives of Strue.

(b) Confirm the result in (a) explicitly for the action Strue in the tennis ball problem.

(c) What about Strue for a free particle? This is subtle, so be careful!
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Solutions

1. The Variational Biathlon.

(a) The shortest distance between two points is a straight line. Since athletes run at a
uniform speed, it follows that travel time is minimised by travelling in a straight line.

(b) By (a), athletes should travel in two straight lines PR and RQ. The travel time as a
function of r is therefore
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Di↵erentiating with respect to R, we obtain
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Setting T

0 = 0 gives us equation (1). To check this is a minimum, you can di↵erentiate
once more and show that T 00

> 0.

(c) Looking at the diagram, the definition of sine and equation (1) imply that
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(d) Ignore the ocean, pretending that sand lies on the other side of y = 0, and consider
racing from P to the mirror image point �Q. Convince yourself that this is equivalent
to racing from P to Q via R. From part (a), competitors should run in a straight
line from P to �Q. Reflecting the “virtual” part of the path around y = 0, we see
immediately that ✓1 = ✓2.

(e) This is very similar to the preceding problem. The travel time is now
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and the derivative is
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Setting T

0 = 0 gives (2), and again T

00
> 0 ensuring this is a minimum. By similar

reasoning to (c), the LHS in (2) is v�1
1 sin ✓1 and the RHS is v�1

2 sin ✓2.



2. POLA and mechanical energy.*

(a) Consider a general 1D Lagrangian L = 1
2mẋ

2 � V (x) for a particle moving from x1 at
t1 to x2 at t2. First, make an infinitesimal change to the path x(t) ! x(t)+�x(t) which
vanishes at the end of the motion but not necessarily at the beginning, so �x2 = 0 but
�x1 may be nonzero. The change in the action is
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We can Taylor expand L in the infinitesimal parameters �x, �ẋ:
Z t2

t1

�Ldt =

Z t2

t1

✓
�x(t)

@L

@x

+ �ẋ(t)
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As in equation [1.6] from lectures, you can check that Newton’s Second Law kills the
last term in (4), since we are evaluating for the true (extremised) action Strue. Thus,
the true action implicitly depends on the initial point x1 via

@Strue

@x1
= �@L

@ẋ

����
t1

.

We’ve also shown that there is no dependence on the initial velocity ẋ(t1) ⌘ ẋ1.

Since Strue =
R t2
t1

L(t) dt, it follows that dStrue/dt1 = �L(t1) from the fundamental
theorem of calculus. To calculate @Strue/@t1, we can expand the total derivative in
partial derivatives and use the chain rule:

@Strue

@t1
=
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ẋ1

= ẋ1
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This is indeed the total mechanical energy.

(b) We can set T = t2 � t1. In the tennis ball problem, for the true path we found

Strue = �T

3
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Noting that ẋ(0) = gT/2 and V (0) = mgx(0) = 0, we find
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mẋ(0)2 + V (0) = E(0).



(c) In terms of the endpoints, v = �x/�t. The action for the free particle is therefore
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1. Bead on a Wire. In this problem you’ll play around with a simple bead and wire
system—much simpler than the systems (below left) you may have enjoyed as a child! In
our simple system, a wire emanates from the origin, making an angle ↵ with the z-axis and
rotating around it with angular velocity ⌦. A bead of mass m is is free to slide up and down
the wire, subject only to gravity.

z

x

y

α

Ω

r

m

(a) Calculate the Lagrangian for the bead in terms of r, the distance from the bead to the
origin. You should find that

L =
1

2
m(ṙ2 + r

2⌦2 sin2

↵)�mgr cos↵. (1)

(b) Use Lagrange’s equation to deduce the equation of motion

r̈ = r⌦2 sin2

↵� g cos↵. (2)

(c) Verify that (2) is solved by

r(t) = A sinh(kt) + B cosh(kt) +
g cos↵

k

2

, (3)

where k = ⌦ sin↵ and A and B are constants of integration related to the initial
conditions r(0), ṙ(0) by

A =
ṙ(0)

k

, B = r(0)� g cos↵

k

2

. (4)

(d) At t = 0, the bead is launched from the origin up the wire at speed v. Assuming that
↵ < ⇡/2, show that the bead never returns to the origin as long as

v �
⇣
g

⌦

⌘
cot↵.

Hint. You can either use (3) to evaluate ṙ directly, or conservation arguments from
the e↵ective potential in (1).



2. Hyperbolic Lizards. One morning, you wake from troubled dreams to find yourself
trapped in the Escher picture below, where distance is measured in lizards.1 As you move
towards the bottom of the picture, the lizards get smaller; equivalently, a rigid object (like
a ruler) gets longer in lizard units.

2D lizard space has coordinates (x, y). At height y, the number of lizards in an interval with
small coordinate displacements �x and �y is

�` =

p
(�x)2 + (�y)2

y

.

The number of lizards encountered on a path P (parameterised by y = f(x), x 2 [x
1

, x

2

]) is
therefore

`(P) =

Z
x2
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p
1 + f

0(x)2

f(x)
dx ⌘

Z
x2
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L(f(x), f 0(x), x) dx. (5)

In the interests of encountering as few lizards as possible on a trip from A(x
1

, y

1

) to B(x
2

, y

2

),
you can minimise the length of your path using Lagrange’s equations.

(a) We have deliberately written (5) to remind you of the Principle of Least Action, with
x playing the role of t and f(x) the role of x(t). Using Lagrange’s equation, show that
the length is minimised for a function f satisfying

ff

00 = �[1 + (f 0)2]. (6)

(b) Check that
f(x) =

p
R

2 � (x� k)2 (7)

satisfies (6). In other words, to minimise the lizards you step on, travel along arcs of
circles centred on the boundary. The x-coordinate of the centre k and the radius R

can always be chosen to match the endpoints A and B.2

1
Apologies for Mark Van Raamsdonk for “borrowing” this joke.

2
Well, sort of. For the case where x1 = x2, y1 6= y2, the shortest path is a vertical line, which we can

interpret as an arc on a circle with infinite radius and centre at infinity.



(c) Verify that, for a solution of (6),

c = L� f

0 @L

@f

0

is a constant of motion, i.e. c0 = 0. In terms of (7), what does c mean geometrically?

(d) *In 3D lizard space, we change to coordinates (x, y, z), with the bottom of the picture
at z = 0. Then, for a path P(s) = (x(s), y(s), z(s)) parameterised by a variable
s 2 [s

1

, s

2

], the length in lizards is
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Z
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⌘
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, y

0
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0
, s) ds.

What are the ignorable coordinates and the corresponding conserved quantities? With-
out solving Lagrange’s equations, briefly discuss what the conserved quantities imply
about lizard-minimising paths, and relate this to the situation in 2D.

3. POLA and the Free Particle. In Tutorial 1, you proved that

@S
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1

= E(t
1

), (8)

where S
true

is the true action, t
1

is the initial time, and E(t
1

) is the total mechanical energy.
But when we apply this to a free particle, with S
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2(t
2
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)/2, we seem to get the
wrong sign:
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).

Explain why there is actually no problem, and equation (8) is correct in this case too.
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Solutions

1. Bead on a Wire.

(a) In terms of r, the position of the bead is

x = r sin↵ cos⌦t, y = r sin↵ cos⌦t z = r cos↵.

The kinetic energy is therefore

T =
1

2
m(ẋ2 + ẏ

2 + ż

2) =
1

2
m(ṙ2 + r

2⌦2 sin2

↵).

In terms of r, the potential energy is

mgz = mgr cos↵.

Hence, the Lagrangian in terms of r is

L = T � V =
1

2
m(ṙ2 + r

2⌦2 sin2

↵)�mgr cos↵.

(b) Let’s take some derivatives:

@L

@r

= mr⌦2 sin2

↵�mg cos↵,
@L

@ṙ

= mṙ,

d

dt

@L

@ṙ

= mr̈.

By Lagrange’s equation, we equate the first and the last to find

r̈ = r⌦2 sin2

↵� g cos↵.

(c) Taking r(t) as in (3),

r̈(t) = k

2


A sinh(kt) + B cosh(kt)

�
= r(t)� g cos↵

as required. We note that

r(0) = B +
g cos↵

k

2

, ṙ(0) = kA

which we can invert to get (4).



(d) From equation (4),

A =
v

k

, B = �g cos↵

k

2

.

Hence, the bead has position
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and velocity

ṙ(t) = v cosh(kt)�
⇣
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k

⌘
sinh(kt).

The velocity is always positive (ensuring the bead never returns to the origin) provided

v cosh(kt) �
⇣
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k

⌘
sinh(kt) =) vk

g cos↵
� tanh(kt),

where we have used cos↵ > 0. Since tanh is bounded above by 1, the bead never
returns to the origin as long as v satisfies
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=
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Alternatively, from (1) we see the bead has an e↵ective potential
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Di↵erentiating and setting to zero, V
e↵

has a maximum at r
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⌘ g cos↵/k2, with
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V
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e↵
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.

Thus, if the initial kinetic energy T = mv

2

/2 > V

max

, the bead flies o↵ never to return.
This is equivalent to

mv
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=

⇣
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⌦

⌘
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2. Hyperbolic Lizards.

(a) We calculate:
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Lagrange’s equation is @L/@f = (@L/@f)0. Multiplying by �f

2

p
1 + (f 0)2, we obtain

ff
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(b) First, note that f 0(x) = �(x� k)/f . It follows that

f(x)f 00(x) = �f ·
✓
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(c) We just plug and chug:
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Since (6) is equivalent to Lagrange’s equation, the last expression vanishes and c

0 = 0.
From the calculations in (a) and (b),

c = L� f
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Thus, c�1 is the radius of the circle we’re travelling on.

(d) The Lagrangian in 3D is

L(x, y, z, x0
, y

0
, z

0
, s) =

p
(x0)2 + (y0)2 + (z0)2

z

.

By inspection, we see that x and y are ignorable, since @L/@x = @L/@y = 0. It follows
from Lagrange’s equations that we have conserved quantities
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0
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p
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y

0

z

p
(x0)2 + (y0)2 + (z0)2

.

We square these and add them together to get another conserved quantity:
"✓
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◆
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✓
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#
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p
(x0)2 + (y0)2 + (z0)2

.

The numerator is the speed |P 0
?| ⌘

p
(x0)2 + (y0)2 as seen from above, i.e. projected

onto the x–y plane. So the projected speed |P 0
?| / z|P 0|. As you move closer to z = 0,

the motion must be more heavily weighted in the z direction. This is exactly what
we saw in the 2D case, where we had to move along arcs of circles centred on the
boundary.

3. POLA and the Free Particle. The key insight is that the velocity is a function of the
endpoints, v = �x/�t. Thus, v depends on t

1

! Taking this into account, the action for the
free particle is
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.

Hence,
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1. Orbits around a black hole. Recall that for the Kepler problem (satellite of mass m
orbiting a star of mass M � m), the equation of motion was

1

2
ṙ2 + Ve↵,N(r) = E, (1)

where E is the total energy of the planet and Ve↵,N the Newtonian e↵ective potential :

Ve↵,N(r) =
J2

2r2
� GM

r
, J = r2�̇.

Both J and E are constants of motion. For an orbit around a black hole, the equation of
motion is the same, but the e↵ective potential picks up a correction from general relativity:

Ve↵(r) =
J2

2r2
� GM

r
� GMJ2

c2r3
.

Here, c is the speed of light. Typical e↵ective potentials are shown below, Newtonian on the
left for comparison and black hole on the right:

(a) For the black hole, describe di↵erent possible motions of the satellite and how they
depend on total energy E. Describe the qualitative di↵erence between a Newtonian
star and a black hole at small r.

(b) In terms of Ve↵ , what is the condition for a circular orbit at r = r0? Show that r0 must
satisfy

GMr20 � J2r0 +
3GMJ2

c2
= 0. (2)

Conclude that there are no circular orbits unless J �
p
12GM/c. What happens to

the graph of Ve↵ as J is lowered past
p
12GM/c? From now on, we assume that

J >
p
12GM/c so the graph above is indeed representative.



(c) Consider a small perturbation to a circular orbit,

r(t) = r0 + ⇠(t). (3)

We would like to determine the equation of motion for ⇠ (an equation for ⇠̈) and thereby
learn the fate of the perturbation.

To find the equation, di↵erentiate (1) with respect to time, and substitute the per-
turbed orbit (3) in to find an equation for ⇠̈:

⇠̈(t) + V 0
e↵(r0 + ⇠) = 0.

Now expand V 0
e↵(r0 + ⇠) as a Taylor series in ⇠, and since ⇠ is small, throw away terms

which are second order or higher. You should obtain

⇠̈(t) + V 00
e↵(r0)⇠(t) = 0. (4)

(d) Explain how solutions to (4) depend on the sign of V 00
e↵(r0). Using (2), show that the

orbit is stable (the perturbation does not grow exponentially) provided

r0 >
6GM

c2
.

(e) Calculate the period T of the circular orbit. You should find that

T = 2⇡r0

r
r0 � 3GM/c2

GM
.

Show that in the limit r0 � 3GM/c2, this matches Kepler’s third law.

Hint. Use (2) and J = r20�̇.

(f) For the stable perturbation in (d), what is the period of the oscillation of ⇠ compared
to the period of the orbit? Draw the orbit. Is it closed?
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Solutions

1. Orbits around a black hole.

(a) For possible motions, see the graph in the lecture notes. In the Newtonian case, at
small r the e↵ective potential is dominated by the repulsive centrifugal barrier / 1/r2.
For the black hole, at small r the potential is dominated by an attractive term / �1/r3.
Given that black holes are meant to suck things in, this makes sense!

(b) A circular orbit corresponds to a local extremum of Ve↵ , so V 0
e↵(r0) = 0. Doing the

di↵erentiation, we get

0 = V 0
e↵(r0) =

1

r40


�J2r0 +GMr20 +

3GMJ2

c2

�
.

Since r�4
0 6= 0, the term in brackets vanishes. Considered as a quadratic in r0, this

expression only has a solution if the discriminant is nonnegative:

J4 � 12(GMJ)2

c2
� 0 =) J �

p
12GM

c
.

If J is lowered through
p
12GM/c, the two extrema in the graph above coalesce when

J =
p
12GM/c, and for J <

p
12GM/c disappear.

(c) As observed earlier, a circular orbit is a local extremum of Ve↵ , with V 0
e↵(r0) = 0. The

Taylor expansion of V 0
e↵(r0 + ⇠) is therefore

V 0
e↵(r0 + ⇠) = ⇠V 00

e↵(r0) + higher order.

Di↵erentiating (1) with respect to time, using the chain rule and the fact that E is
constant, we get

ṙ


r̈ + V 0

e↵(r)

�
= 0.

But r̈ = r̈0 + ⇠̈ = ⇠̈ since r0 is constant. Dividing out ṙ and inserting the Taylor
expansion of V 0

e↵ ,
⇠̈ + V 00

e↵(r0)⇠ = 0.

(d) Let ↵ ⌘ V 00
e↵(r0). For ↵ > 0, the solutions to (4) are oscillatory :

⇠(t) = A cos(
p
↵t) + B sin(

p
↵t).

In this case, the perturbation neither grows nor shrinks, and the orbit is stable. For
↵ < 0, the perturbation is exponential :

⇠(t) = Ce
p

|↵|t +De�
p

|↵|t.



Generically, C 6= 0 and the perturbation blows up exponentially. Our only hope for a
stable orbit is oscillatory solutions. This requires ↵ = V 00

e↵(r0) > 0, and hence

0 < ↵ =
1

r50


3J2r0 � 2GMr20 �

12GMJ2

c2

�

=) 0 < J2r0 �
6GMJ2

c2
� 2


GMr20 � J2r0 +

3GMJ2

c2

�

=) r0 >
6GM

c2

where we have used (2) in going from the second to the third line.

(e) We can solve (2) as an equation for J , and hence �̇:

J2 = r40�̇
2 =

GMr20
r0 � 3GM/c2

=) d�

dt
=

1

r0

s
GM

r0 � 3GM/c2
.

We can integrate dt = (dt/d�)d� to get the period:

T =

Z T

0

dt =

Z 2⇡

0

d�
dt

d�
= 2⇡r0

r
r0 � 3GM/c2

GM
.

Kepler’s third law for a circular orbit is TN = (2⇡/
p
GM)r2/30 , which clearly matches

T when r0 � 3GM/c2.

(f) From our analysis in (d), we know that the oscillation frequency of ⇠(t) (as distinct
from the orbital frequency calculated in (e)) is

p
↵ =

p
V 00
e↵(r0). Hence, the period is

T⇠ =
2⇡p
↵

= 2⇡
⇥
J2r�5

0 (r0 � 6GM/c2)
⇤�1/2

= 2⇡r0

s
r0(r0 � 3GM/c2)

GM(r0 � 6GM/c2)

where we have used the expression for J2 from the previous question. The ratio of
periods is then

T⇠

T
=

r
r0

r0 � 6GM/c2
.

We see that T⇠ is always bigger that T , so there is no way to form a closed orbit with
period T . We draw the shifting orbit below:

This changing orbit shape is called the advance of the perihelion. Historically, this was
one of the first successful experimental tests of general relativity.



PHYC20014 Physical Systems

Classical Mechanics: Tutorial 4 Supplementary Problems

1. Mechanics of Mercury.1 The orbital mechanics of the planet Mercury are truly
fascinating. The planet is in a 3:2 spin-orbit resonance, meaning that it rotates exactly
three times for every two revolutions that it makes around the Sun. Similarly, the Moon is
in a 1:1 spin-orbit resonance; it rotates once for every revolution it makes around the Earth,
which is why we always see the same face.

Mercury is not perfectly spherical. Hence, the Sun exerts a gravitational torque upon it,
keeping it locked in its 3:2 spin-orbit resonance. (Convince yourself that this torque vanishes
for a spherical body.) Modern experiments2 have measured Mercury’s moment-of-inertia
tensor to about three significant figures. They show that Mercury is slightly triaxial, with
principal moments satisfying I1 < I2 < I3, and

I2 � I1

I3
= 2.2⇥ 10�4

. (1)

See Margot, J.-L. et al. 2012, J. Geophys. Res., 117, E00L09, if you want to learn more!
In this question, we calculate the potential energy U of the gravitational interaction

between Mercury and the Sun, which leads to the above torque. As we learned in class, U
enters into the Lagrangian for Mercury’s motion.

(a) Treat the Sun as a point mass M� at the origin. By dividing Mercury into infinitesimal
pieces, show that the gravitational potential energy is given exactly by

U = �GM�

Z
d

3x0
⇢(x0)

|x0| (2)

where the integral is over the volume of the planet, ⇢ is the mass density, and x0 is the
displacement of an infinitesimal mass element from the Sun.

(b) Let x denote the displacement of the centre of mass of Mercury from the origin, and let
s be the displacement of an infintesimal mass element from the centre of mass. Then
x0 = x+ s. Mercury is small compared to its distance from the Sun, so |s| ⌧ r = |x|.
By Taylor expanding or otherwise, show that

1

|x0| =
1

r

� n · s
r

2
+

3(n · s)2 � |s|2

2r3
(3)

with n ⌘ x/r.

1
This question was written by Andrew Melatos.

2
These experiments use two techniques: tracking Mercury’s spin by bouncing radar echoes o↵ the surface,

and mapping its gravitational field from the trajectory of the MESSENGER spacecraft. MESSENGER
(MErcury Surface, Space ENvironment, GEochemistry, and Ranging) orbited Mercury from 2011 until 2015.



(c) Substitute (3) into (2) to obtain

U = �GM�MMercury

r

� GM�

2r3

Z
d

3s ⇢CM(s) [3(n · s)2 � |s|2] (4)

where ⇢CM(s) ⌘ ⇢(x+ s). You may assume that ⇢CM(s) = ⇢CM(�s). From now on, we
use ⇢ to refer to the centre of mass distribution ⇢CM.

(d) From the general definition of the moment-of-inertia tensor I, prove that

Z
d

3s ⇢(s) [3(n · s)2 � |s|2] = Tr(I)� 3nT
In , (5)

where Tr denotes the trace, superscript T denotes the transpose, and we treat n, s as
column vectors. You can prove this component-wise by brute force or some other way;
there are many ways to reach the answer.

(e) Mercury is almost spherical, so we have I1 ⇡ I2 ⇡ I3. Let  be the angle between n
and the principal axis e1. Using equations (4) and (5), deduce that

U = �GM�MMercury

r

� 3GM�(I1 � I2)

2r3
sin2

 . (6)

2. The phase-locked trombonist. A rhythmically-challenged trombonist tends to be out
of time with the band. The band (phase ✓

B

) has tempo !
B

:

d✓

B

dt

= !

B

.

The trombonist (phase ✓) has a natural tempo ! 6= !

B

. Despite their natural inclination,
the trombonist wants to stay in phase with the band, so ✓ evolves according to

d✓

dt

= ! + I sin(✓
B

� ✓), (7)

where I measures the strength of the trombonist’s response to the band. You can think of
✓ = 0, 2⇡, 4⇡, . . . as the trombonist’s beats, and ✓

B

= 0, 2⇡, 4⇡, . . . as the band’s beats.
The phase di↵erence  ⌘ ✓

B

� ✓ therefore satisfies

d 

dt

= !

B

� ! � I sin . (8)

(a) Explain why (7) pushes ✓ towards ✓
B

.

(b) Introducing variables ⌧ = It, � = (!
B

� !)/I, show that (8) can be written

d 

d⌧

= � � sin . (9)



(c) Steady state solutions satisfy d /d⌧ = 0. This means the trombonist is phase-locked

with the band—the tempos are the same, although their beats may be out of sync by
a constant amount. Show that phase locking is only possible for

! � I  !

B

 ! + I.

When do the beats coincide?

(d) Even when phase-locked, the trombonist occasionally wanders out of phase a little.
Whether they stay phase-locked depends on whether the solution is stable. Show that
for |�| < 1 there are two solutions  1 <  2, with  1 stable and  2 unstable.

(e) For |�| > 1, the trombonist undergoes phase drift : the phase di↵erence  inexorably
changes with time. Show that the time it takes for  to change by 2⇡ is

T =
2⇡p

(!
B

� !)2 � I

2
.

Put another way, T is the time it takes the band and trombonist to move a beat out
of sync. This gives us a practical way to measure I, provided we know ! and !

B

.

Hint. You may need the integral
Z 2⇡

0

d 

� � sin 
=

2⇡p
�

2 � 1
.

3. Spaghetti pendulum.* In an anarchic Carlton share house, spaghetti and meatballs
are cooked in vast quantities each night and eaten communally. One of the housemates is a
physics student, and as they slurp up a single spaghetto, they notice a meatball of mass m
attached to the end.

To distract themselves from the meal, they begin speculating about the meatball’s equation
of motion.

(a) Write the Lagrangian for a free meatball subject to gravity. In terms of the (`, ✓)
coordinates in the diagram, you should find

L =
1

2
m(`2✓̇2 + ˙̀2) +mg` cos ✓.

Hence, derive the equations of motion

`✓̈ + 2 ˙̀✓̇ + g sin ✓ = 0, ῭= `✓̇

2 + g cos ✓.



(b) Suppose the housemate slurps up a spaghetto at constant rate v. Show that for small
oscillations of the meatball (i.e. small angles), the first equation of motion becomes

`✓̈ � 2v✓̇ + g✓ = 0. (10)

(c) Using the chain rule, rewrite (10) as

`

d

2
✓

d`

2
+ 2

d✓

d`

+
g

v

2
✓ = 0. (11)

Now making the change of variables x ⌘ �2
p
g`/v and y ⌘ x✓, show that (11) becomes

x

2
y

00 + xy

0 + (x2 � 1)y = 0 (12)

where a dash denotes derivatives with respect to x. The di↵erential equation (12) is
solved by Bessel functions J1(x) and Y1(x):

y(x) = AJ1(x) + BY1(x).

(d) For simplicity, assume A = 1 and B = 0. Suppose the spaghetto has length L at time
t = 0. Revert to our original variables, and express ✓ as a function of t. If you have
a computer handy, graph ✓ and give a qualitative description of the dynamics of the
meatball.
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Solutions

1. Mechanics of Mercury.

(a) For an infinitesimal mass element dm = d

3x0
⇢(x0) a distance |x0| from the origin, the

gravitational potential due to the interaction with the Sun is

dU = �GM� dm

|x0| .

Integrating over the volume of mercury, we obtain

U = �GM�

Z
d

3x0
⇢(x0)

|x0| .

(b) First, note that

|x0|2 = (x+ s) · (x+ s) = r

2

✓
1 +

2(n · s)
r

+
|s|2

r

2

◆
.

Using Taylor series or the binomial expansion, for ✏ ⌧ 1 we have

(1 + ✏)�1/2 ' 1� 1

2
✏+

3

8
✏

2 + . . .

Combining the two, to second order in our small parameter s/r, we have

1

|x0| =

r

2

✓
1 +

2(n · s)
r

+
|s|2

r

2

◆��1/2

' 1

r


1� (n · s)

r

� |s|2

2r2
+

3(2n · s)2

8r2

�

=
1

r

� n · s
r

2
+

3(n · s)2 � |s|2

2r3
.

(c) Since r is constant, we have

U = �GM�

Z
d

3x0
⇢(x0)

|x0|

= �GM�

Z
d

3x0
⇢(x0)


1

r

� n · s
r

2
+

3(n · s)2 � |s|2

2r3

�

= �GM�MMercury

r

� GM�

2r3

Z
d

3s ⇢(s) [3(n · s)2 � |s|2] + GM�

r

2

Z
d

3s ⇢CM(s)(n · s) .



On the last line, we have integrated ⇢(x0) over the volume of the planet to get the total
mass MMercury. The last integral vanishes, since the integrand is odd under s ! �s:

⇢CM(�s)(n ·�s) = �⇢CM(s)(n · s).

Thus, we obtain

U = �GM�MMercury

r

� GM�

2r3

Z
d

3s ⇢CM(s) [3(n · s)2 � |s|2] .

(d) First, we recall the matrix expression for I, using s = (x, y, z):

I =

Z
d

3s ⇢(s)

2

4
y

2 + z

2 �xy �xz

�yx x

2 + z

2 �yz

�zx �zy x

2 + y

2

3

5
.

Then

Tr(I) =

Z
d

3s ⇢(s)Tr

2

4
y

2 + z

2 �xy �xz

�yx x

2 + z

2 �yz

�zx �zy x

2 + y

2

3

5 = 2

Z
d

3s ⇢(s)|s|2.

Similarly, writing n = (n
x

, n

y

, n

z

),

nT
In =

Z
d

3s ⇢(s)
⇥
n

x

n

y

n

z

⇤
2

4
y

2 + z

2 �xy �xz

�yx x

2 + z

2 �yz

�zx �zy x

2 + y

2

3

5

2

4
n

x

n

y

n

z

3

5

=

Z
d

3s ⇢(s)
⇥
n

x

n

y

n

z

⇤
2

4
n

x

(y2 + z

2)� n

y

xy � n

z

xz

�n

x

yx+ n

y

(x2 + z

2)� n

z

yz

�n

x

zx� n

y

zy + n

z

(x2 + y

2)

3

5

=

Z
d

3s ⇢(s)

⇢
(n2

x

+ n

2
y

+ n

2
z

)(x2 + y

2 + z

2)� (n
x

x+ n

y

y + n

z

z)2
�

=

Z
d

3s ⇢(s)
⇥
|s|2 � (n · s)2

⇤
,

exploiting the fact that n has unit norm, n2
x

+ n

2
y

+ n

2
z

= 1. Combining these two
calculations,

Tr(I)� 3nT
In =

Z
d

3s ⇢(s) [3(n · s)2 � |s|2] .

If you’re feeling brave, here is an abstract but much slicker approach using tensor

notation. We can write the components of the matrix I as follows:

I

ab

=

Z
d

3s ⇢(s)[|s|2�
ab

� s

a

s

b

]



where �
ab

is the Kronecker delta, or equivalently, indexes the identity matrix. In
Einstein summation notation, repeated indices are summed over. Einstein jokingly
referred to this as his greatest mathematical discovery! In our case,

Tr(I) =
3X

a=1

I

aa

⌘ I

aa

=

Z
d

3s ⇢(s)
⇥
|s|2�

aa

� s

a

s

a

⇤
=

Z
d

3s ⇢(s) · 2|s|2

since �
aa

= 3 and s

a

s

a

= |s|2. Now we use n

a

n

a

= |n|2 = 1 to obtain

nT
In =

2X

a,b=1

n

a

I

ab

n

b

⌘ n

a

I

ab

n

b

=

Z
d

3s ⇢(s)
⇥
|s|2n

a

�

ab

n

b

� (n
a

s

a

)(n
b

s

b

)
⇤

=

Z
d

3s ⇢(s)
⇥
|s|2 � (n · s)2

⇤

since n

a

s

a

= n · s. Much nicer!

(e) Using principal axes diagonalises the moment of inertia tensor: I = diag(I1, I2, I3).
The normal vector n makes an angle  with the e1-axis, and also subtends a polar
angle � from the e2-axis in the e2,3-plane. So, in principal coordinates, we can write
n = (cos , sin cos�, sin sin�), and

Tr(I)� 3nT
In = I1(1� 3 cos2  ) + I2(1� 3 sin2

 cos2  ) + I3(1� 3 sin2 sin cos2  )

= 3(I1 � I2 cos
2
�� I3 sin

2
�) sin2

 � 2I1 + I2 + I3

⇡ 3(I1 � I2) sin
2
 

where we have used I1 ⇡ I2 ⇡ I3 on the last line. Subbing into (4) and (5),

U = �GM�MMercury

r

� 3GM�(I1 � I2)

2r3
sin2

 .

2. The phase-locked trombonist.

(a) Assume I > 0. If the trombonist is lagging, with ✓ < ✓

B

, the sine term will speed ✓̇
up; similarly, if the trombonist is too fast, the the sine term slows them down.

(b) From (8), we have

d 

d⌧

=
d 

Idt

=
!

B

� !

I

� sin = � � sin .

(c) Setting the LHS of (9) to zero, we get

� = sin .



This is only possible for |�|  1, or equivalently,

! � I  !

B

 ! + I.

Beats coincide when  = 0, or � = 0. This means beats never coincide for steady state
solutions unless !

B

= !!

(d) Let’s draw d /d⌧ vs  for � = 0.5:

Steady state solutions correspond to the zeros near  1 ⇡ 0.5 and  2 ⇡ 3; The solution
 1 is stable since increasing  a little make d /d⌧ negative, tending to restore it to  1,
and likewise for decreasing  . For the same reason,  2 is unstable; push it a little and
it moves further away. Changing � (but keeping |�| < 1) only changes the position of
the zeros, but doesn’t a↵ect their stability.

(e) We use the same trick from ordinary mechanics problems:

T =

Z
 =2⇡

 =0

dt =

Z 2⇡

0

dt

d 

d =

Z 2⇡

0

d 

� � sin ✓
=

2⇡p
�

2 � 1
.

Notice that as � ! ±1, the period goes o↵ to infinity: if the trombonist is phase-locked,
they never skip a beat!

3. Spaghetti pendulum.*

(a) Converting from Cartesian to polar coordinates,

x = ` cos ✓, ẋ = �`✓̇ sin ✓ + ˙̀cos ✓

y = ` sin ✓, ẏ = `✓̇ cos ✓ + ˙̀ sin ✓.

Hence, a little algebra shows that

T =
1

2
m(ẋ2 + ẏ

2) =
1

2
m(`2✓̇2 + ˙̀2).

Gravity pulls in the positive x direction, so

V = �mgx = �mg` cos ✓.



Hence,

L = T � V =
1

2
m(`2✓̇2 + ˙̀2) +mg` cos ✓.

For Lagrange’s equations, we need

@L

@✓

= �mg` sin ✓,
@L

@✓̇

= m`

2
✓̇,

@L

@`

= m`✓̇

2 +mg cos ✓,
@L

@

˙̀
= mṙ.

From Lagrange’s equations, we therefore obtain

`✓̈ + 2 ˙̀ + g sin ✓ = 0, ῭= `✓̇

2 + g cos ✓.

(b) If the housemate slurps spaghetti at a constant rate v, the length of pendulum changes
at rate ˙̀ = �v. For small oscillations of the meatball, we use the approximation
sin ✓ ⇡ ✓. Hence, the equation of motion for ✓ becomes

`✓̈ � 2v + g✓ = 0.

(c) We note from the chain rule that

✓̇ =
d✓

d`

d`

dt

= �v

d✓

d`

, ✓̇ = v

2d
2
✓

d`

2
.

Substituting into (10), we get

`

d

2
✓

d`

2
+ 2

d✓

d`

+
g

v

2
✓ = 0.

First, change variables to x ⌘ �2
p
g`/v. After some algebra, we get

x✓

00 + 3✓0 + x✓ = 0,

where dashes denote x derivatives. Now make the change of variable y = x✓. After
some more algebra, we get

x

2
y

00 + xy

0 + (x2 � 1)y = 0.

(d) Let’s go backwards:

y(x) = J1(x) =) ✓(x) =
1

x

J1(x)

=) ✓(t) = � v

2
p

g(L� vt)
J1

"
�
2
p
g(L� vt)

v

#

where on the last line, we use `(t) = L� vt. We plot this for a slurping rate of 5 cm/s,
initial spaghetto length L = 50 cm, and normal gravity g = 10 m/s2:



2 4 6 8
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As you might expect from everyday experience, as the spaghetto gets shorter, the
meatball oscillations become faster and wider.
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1. Canonical transformations. In Lagrangian mechanics, we can choose coordinates at
will; the Principle of Least Action (or equivalently, Lagrange’s Equation) does not depend on
how we label configuration space. Hamiltonian mechanics is a little bit di↵erent: Hamilton’s
equations

q̇i =
@H

@pi
, ṗi = �

@H

@qi
(1)

are not invariant under any old change of phase space coordinates (qi, pi) ! (Qi(q, p), Pi(q, p)).
A coordinate transformation preserving (1) is called a canonical transformation.

(a) In lectures, we derived the Hamiltonian for a 2D simple harmonic oscillator. In 1D,
the Hamiltonian is even simpler:

H(q, p) =
p2

2m
+

1

2
kq2 =

p2

2m
+

1

2
m!2q2. (2)

Rotate coordinates in phase space by an angle ✓:

Q(q, p) = q cos ✓ � p sin ✓, P (q, p) = q sin ✓ + p cos ✓.

Show that Q and P evolve according to

Q̇ = P


1

m
cos2 ✓ +m!2 sin2 ✓

�
+Q cos ✓ sin ✓


m!2

�

1

m

�

Ṗ = �Q


1

m
sin2 ✓ +m!2 cos2 ✓

�
+ P cos ✓ sin ✓


1

m
�m!2

�
.

Write down the Hamiltonian H(Q,P ) in the new coordinates. When is the transfor-
mation canonical?

(b) Suppose the transformation (qi, pi) ! (Qi, Pi) is canonical. Argue that the Poisson
bracket is automatically preserved:

{f, g}(q,p) ⌘
@f

@qj

@g

@pj
�

@g

@qj

@f

@pj
=

@f

@Qj

@g

@Pj
�

@g

@Qj

@f

@Pj
⌘ {f, g}(Q,P ).

Also derive the converse: a transformation preserving the Poisson bracket is canonical.

(c) Consider an infinitesimal change of coordinates,

qi ! Qi = qi + ✏Ai(q, p)

pi ! Pi = pi + ✏Bi(q, p).

Show this transformation is canonical if there is some smooth functionG(q, p) satisfying

Ai =
@G

@pi
, Bi = �

@G

@qi
.

This looks a lot like Hamilton’s equations. In fact, setting Ai = q̇i, Bi = ṗi, and
G = H, we see that evolving the system an infinitesimal time, t ! t+ ✏, is canonical.



2. Action-angle variables. We now see how canonical transformations can make life
simpler in Hamiltonian mechanics. For the 1D SHO, make the transformation (q, p) ! (✓, I)
given by

q =

r
2I

m!
sin ✓, p =

p

2Im! cos ✓. (3)

The new coordinates are called action-angle variables.

(a) Demonstrate that (q, p) ! (✓, I) is canonical using the Poisson bracket.

(b) Derive the Hamiltonian in the new variables. You should find

H(✓, I) = !I.

(c) What are Hamilton’s equations? Draw the corresponding trajectories in phase space.

(d) Consider a 1D Hamiltonian

H(q, p) =
p2

2m
+ V (q)

exhibiting periodic motion. The corresponding action variable I is the area of phase
space enclosed in a single orbit divided by 2⇡:

I =
A

2⇡
.

Check that this agrees with (3).

3. Delays and social media. Consider a toy model of the popularity P of a topic on
social media,

Ṗ (t) = Ṗ (t� T ) + A[P (t)� P (t� T )]. (4)

The first term on the right measures the response to trending, while the last two (governed
by the “activity” A) correspond to random surfing onto new topics or away from old ones.
Finally, T > 0 is the characteristic time lag for users to respond to new items.

(a) Trial an exponential P (t) = e�t in (4). Show that � must satisfy the equation

(�� A)(1� e��T ) = 0. (5)

(b) Show that (5) has solutions � = A and � = im! for ! ⌘ 2⇡/T , m 2 Z.
(c) For A > 0, the solution � = A corresponds to runaway growth, i.e. something going

viral. In terms of (4), explain qualitatively how this happens.

(d) The solutions � = im! correspond to periodic fluctuations in popularity. In terms
of (4), explain qualitatively how oscillations arise. Evidently, for this model, trending
alone cannot generate viral success.
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Solutions

1. Canonical transformations.

(a) Using Hamilton’s equations (1) and the Hamiltonian (2) for (p, q), the rotated variables
(Q,P ) evolve according to

Q̇ = q̇ cos ✓ � ṗ sin ✓ =
p

m
cos ✓ +m!2q sin ✓,

Ṗ = q̇ sin ✓ + ṗ cos ✓ =
p

m
sin ✓ �m!2q cos ✓.

We can rotate by �✓ to express the (q, p) in terms of (Q,P ):

q = Q cos ✓ + P sin ✓, p = �Q sin ✓ + P cos ✓.

After a little algebra, we get

Q̇ = P


1

m
cos2 ✓ +m!2 sin2 ✓

�
+Q cos ✓ sin ✓


m!2

�

1

m

�

Ṗ = �Q


1

m
sin2 ✓ +m!2 cos2 ✓

�
+ P cos ✓ sin ✓


1

m
�m!2

�
.

Now write the Hamiltonian in the new variables:

H(Q,P ) =
p2

2m
+

1

2
m!2q2

=
1

2m


�Q sin ✓ + P cos ✓

�2
+

1

2
m!2


Q cos ✓ + P sin ✓

�2

= Q2


1

2m
sin2 ✓ +

1

2
m!2 cos2 ✓

�
+ P 2


1

2m
cos2 ✓ +

1

2
m!2 sin2 ✓

�

+ PQ cos ✓ sin ✓


m!2

�

1

m

�
.

This is a horrible mess! We will see a much nicer change of coordinates in Problem 2.
Finally, let’s see if the system obeys (1):

@H

@P
= P


1

m
cos2 ✓ +m!2 sin2 ✓

�
+Q cos ✓ sin ✓


m!2

�

1

m

�
= Q̇

@H

@Q
= Q


1

m
sin2 ✓ +m!2 sin2 ✓

�
+ P cos ✓ sin ✓


m!2

�

1

m

�
= �Ṗ .

We see that the transformation is canonical for all ✓. In fact, rotations are canonical
for any 2D phase space. For higher-dimensional phase space, this no longer holds.



(b) By definition, a canonical transformation satisfies (1). Let’s unpack this a bit using
the chain rule and Hamilton’s equations for q and p:

@H

@Pi
= Q̇i =

@Qi

@qj
q̇j +

@Qi

@pj
ṗj

=
@Qi

@qj

@H

@pj
�

@Qi

@pj

@H

@qj

=
@Qi

@qj

✓
@H

@Qk

@Qk

@pj
+

@H

@Pk

@Pk

@pj

◆
�

@Qi

@pj

✓
@H

@Qk

@Qk

@qj
+

@H

@Pk

@Pk

@qj

◆
. (6)

Comparing the first and last terms, we can immediately read o↵ that

@Qi

@qj

@Pk

@pj
�

@Qi

@pj

@Pk

@qj
= {Qi, Pk}(q,p) = �ik (7)

@Qi

@qj

@Qk

@pj
�

@Qi

@pj

@Qk

@qj
= {Qi, Qk}(q,p) = 0. (8)

Similarly, the equation for Ṗi tells us that

{Pi, Pk}(q,p) = 0. (9)

With (8) and (9), we can simplify the first term in the Poisson bracket {f, g}(q,p):

@f

@qj

@g

@pj
=

✓
@f

@Qk

@Qk

@qj
+

@f

@Pk

@Pk

@qj

◆✓
@g

@Q`

@Q`

@pj
+

@g

@P`

@P`

@pj

◆

=
@f

@Qk

@Qk

@qj

@g

@Q`

@Q`

@pj
+

@f

@Qk

@Qk

@qj

@g

@P`

@P`

@pj

+
@f

@Pk

@Pk

@qj

@g

@Q`

@Q`

@pj
+

@f

@Pk

@Pk

@qj

@g

@P`

@P`

@pj
.

Thus, swapping dummy indices l $ k where convenient and using (7)–(9),

{f, g}(q,p) = {f, g}(Q,,P ){Qk, P`}(q,p) +
@f

@Qk

@g

@Q`
{Qk, Q`}(q,p) +

@f

@Pk

@g

@P`
{Pk, P`}(q,p)

= {f, g}(Q,P ).

Done! Going backwards, suppose that the Poisson bracket is preserved. Then (7), (8)
and (9) automatically follow. But it is not hard to see that these are equivalent to the
identity in (6) and the corresponding result for Ṗi. In turn, these imply Hamilton’s
equations in the (Q,P ) coordinates.

You may be comforted to know that there are slicker techniques for doing these
calculations, namely the symplectic approach. See §9.4 of Goldstein, Poole and Safko
for more detail.



(c) We need Poisson brackets (7)–(9) to be conserved. Start with {Qi, Pk}(q,p) = �ik,
discarding terms of order ✏2:

{Qi, Pk}(q,p) =
@Qi

@qj

@Pk

@pj
�

@Pk

@qj

@Qi

@pj

=

✓
�ij + ✏

@Ai

@qj

◆✓
�kj + ✏

@Bk

@pj

◆
� ✏2

@Ai

@pj

@Bk

@qj

' �ik + ✏

✓
@Ai

@qk
+

@Bk

@pi

◆
. (10)

We need this last term to vanish if the transformation is to be canonical. Assume there
is some smooth function G(q, p) satisfying

Ai =
@G

@pi
, Bi = �

@G

@qi
.

Since partial derivatives of G commute, we immediately obtain

@Ai

@qk
=

@2G

@qk@pi
=

@2G

@pi@qk
= �

@Bk

@pi
.

Thus, the last term in (10) vanishes and the transformation is canonical. You can
easily check that the remaining Poisson brackets are satisfied.

2. Action-angle variables.

(a) As discussed in Problem 1, to show a transformation is canonical, we only need to
check the Poisson brackets (7)–(9). In fact, since we have defined p and q in terms of I
and ✓, it is easier (but equivalent) to verify the usual q, p Poisson brackets in the (✓, I)
coordinates:

{q, p}✓,I =
@q

@✓

@p

@I
�

@q

@I

@p

@✓

=

r
2I

m!
cos ✓ ·

r
m!

2I
cos ✓ +

r
1

2Im!
sin ✓ ·

p

2Im! sin ✓

= cos2 ✓ + sin2 ✓ = 1.

The remaining brackets {q, q}✓,I = {p, p}✓,I = 0 follow immediately by antisymmetry.
So the action-angle variables are indeed canonical.

(b) We simply substitute (3) into (2):

H(✓, I) =
p2

2m
+

1

2
m!2q2 =

2Im!

2m
cos2 ✓ +

2Im!2

2m!
sin2 ✓ = !I.



(c) Hamilton’s equations (1) become

✓̇ =
@H

@I
= !, İ = �

@H

@✓
= 0.

In other words, I is conserved on phase space trajectories, while ✓ rotates with angular
frequency !. We could draw these on the phase plane, but the dynamics is better
represented on a cylinder :

θ

(d) Since energy is conserved, H = E on phase space trajectories. So, for the 1D SHO,
the trajectory is an ellipse:

1 =
p2

2mE
+

q2

2(m!2)�1E
⌘

p2

a2
+

q2

b2
.

The area of the ellipse is therefore

A = ⇡ab = ⇡
p
2mE · 2(m!2)�1E =

2⇡H

!
= 2⇡I.

3. Delays and viral marketing.

(a) Substituting P (t) = e�t into (4), we obtain

�e�t = �e��T e�t + Ae�t(1� e��T ).

Dividing by e�t and rearranging, we obtain (5).

(b) We need to make either factor of (5) vanish. Clearly, the first factor vanishes for � = A.
The second factor vanishes when e��T = 1, or

�T = 2⇡mi, m 2 Z.

Equivalently, � = im!, where ! ⌘ 2⇡/T .

(c) For runaway growth, trending and random browsing away from the topic cancel out,
leaving the random browsing onto the topic:

Ṗ (t) = AP (t).

This creates exponential, “Zahir”-type viral success!

(d) In this case, the random browsing onto and away from the topic cancel, leaving the
response to trending:

Ṗ (t) = Ṗ (t� T ).

This is solved by periodic functions whose period TP fits neatly into T , i.e. T = nTp

for some positive integer n.


