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Abstract

Questions I’ve contributed to the UBC Physics Circle (2018–19). None of them require
calculus, but they do assume some problem-solving maturity and a strong background in
high school physics and maths. All material here is original, though I draw on a variety
of inspirations and sources, and list specific references where possible. Feel free to use
problems, but please cite the author. If you have any corrections, please contact me at
<david.a.wakeham@gmail.com> .
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1 Motion

1.1 Gone fishin’

After a day hard at work on kinematics, Emmy decides to take a break from physics and go
fishing in nearby Lake Lagrange. But there is no escape! As she prepares to cast her lure, she
realises she has an interesting ballistics problem on her hands.

w

w+s

v

h

R

Figure 1: Emmy’s unconventional method for casting a lure.

1. The top of her rod is a distance h above the water, and the lure (mass m) hangs on
a length of fishing wire w. To cast, Emmy will swing the lure 180◦ around the end of
the rod and release at the highest point, where the velocity has no vertical component.
Assuming she can impart angular momentum L = mvw to the lure, calculate the range
R in terms of h, w, L and m. You can ignore the effect of gravity during the swinging
phase.

2. As Emmy swings through, she can introduce some additional slack s into the wire. As-
suming conservation of angular momentum, this will slow the lure but raise the release
point. Find the range R in terms of the parameters w, s, h, L, and determine the amount
of slack s that maximises the casting distance. Again, ignore the effect of gravity.

Hint. Try maximising the square of the range.

3. Now include gravity in the swinging phase, and calculate the range as a function of s.
Determine the optimum s, and find a condition on h,w, L, g,m which ensures s > 0.

Hint. Complete the square in R2.
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Solution

1. Since the lure is released with no vertical velocity, the time it takes to hit the water is

h+ w =
1

2
gt2 =⇒ t =

√
2h

g
.

The “muzzle” velocity is v = L/mw, so the range r of the lure is

R =
L

mw

√
2(h+ w)

g
.

2. Our previous answer for range is simply modified by making the replacement w → w+ s,
but keeping the angular momentum L fixed:

R =
L

m(w + s)

√
2(h+ w + s)

g
.

We would like to maximise this distance. We can ignore the constants L, m and g/2, write
x = w + s, and focus on maximising

f(x) =

√
h+ x

x
.

Since this is positive, we can maximise this just as well by maximising its square as the
hint suggests:

F (x) = f2(x) =
h+ x

x2
.

It’s not hard to show that this is a decreasing function, so that the best strategy is for
Emmy to introduce no slack at all. Let’s check that this is true, assuming 0 < x < z and
trying to show that F (x) > F (y), or even better, F (x)− F (z) > 0. We have

F (x)− F (z) =
h+ x

x2
− h+ z

z2

=
(h+ x)z2 − (h+ z)x2

x2z2

=
h(z2 − x2) + xz(z − x)

x2z2
.

Since z > x, we have z2 > x2, so the numerator is positive. The denominator is also
positive, which means that the whole expression is positive! So the maximum range
occurs for s = 0.

3. If Emmy adds slack s during the swing, then the lure will undergo a change in height
∆y = 2w + s. This causes the lure to gain gravitational potential energy

∆U = mg∆y = mg(2w + s),
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leading to a reduced release velocity v′:

∆K =
1

2
m[(v′)2 − v2] = −∆U =⇒ v′ =

√
v2 − 2g(2w + s).

Plugging in v = L/mw, the range is now

R =

√
2(h+ w + s)

g

[
L2

m2w2
− 2g(2w + s)

]
.

The question now is how to optimise this horrible looking expression! Once again, we
can square R, throw away some constants which sit out front, and maximise the very
simple function

F (s) = (A+ s)(B − s),

where

A = h+ w, B =
L2

2gm2w2
− 2w.

By completing the square, we can write

F (s) = −
(
s− 1

2(A−B)
)2

+
1

4
(A−B)2.

Only the first part is relevant to figuring out the optimal s. The function F (s) will be
maximised for

s =
1

2
(A−B) = h+ 3w − L2

2gm2w2
.

Of course, for this to be positive, we require A > B, or equivalently

h+ 3w >
L2

2gm2w2
.
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1.2 Snowballing

Recall the formula for impulse, stating that a force applied over time will lead to a change in
momentum:

Favg∆t = ∆p.

The force can change, with Favg denoting the average over the interval. We can approximate
the average force as the arithmetic average of the applied force at the start and the end of the
interval:

Favg ≈
Fstart + Fend

2
.

The impulse formula works for an object with changing mass. In fact, we can view it as the

θ
Figure 2: A snowball and a bowling ball racing down a mountainside.

most general statement of Newton’s second law! For an object with constant mass m, we can
write

F = ma = m
∆v

∆t
=

∆(mv)

∆t
=

∆p

∆t
.

The rightmost expression is precisely the impulse formula, and works perfectly well for an
object with changing mass.

As an example, consider a snowball of initial mass m0 and radius r0 sitting on top of a
mountain. A northerly begins to blow, dislodging the snowball and causing it to roll down the
mountainside and accumulate snow. We will assume the snowball has uniform density ρ and
the slope is constant.

1. First, suppose that the snowball is frozen solid with constant mass. If the mountain
slopes at an angle θ to the horizontal, what is the snowball’s linear accleration a0?

Hint. The moment of inertia of the snowball is I = (2/5)m0r
2
0.

2. Now suppose that in a short time increment ∆t, the snowball picks up a mass ∆m. Show
that the acceleration over the interval a = ∆v/∆t is related to the acceleration a0 of the
constant mass snowball by

(m+ ∆m)a =

(
m+

1

2
∆m

)
a0 − v

∆m

∆t
.
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3. Taking the limit of a very small time interval ∆t, argue that

a = a0 −
v

m

∆m

∆t
.

4. A bowling ball (constant mass and density) races the snowball down the mountainside. If
the snowball is gathering snow, which arrives at the bottom of the slope first? If the sun
comes out, and the snowball melts as it travels down the slope instead of getting heavier,
what happens then?

5. Suppose that the rate of accumulation ∆m/∆t > 0 is proportional to the surface area of
the snowball, but inversely proportional to the speed.1 What is the acceleration after the
snowball has been rolling for a very long time?

Solution

1. After the snowball moves a vertical distance h, it acquires kinetic energy E = m0gh.
This energy will be partly associated with its linear velocity v down the slope, and partly
associated with its angular velocity ω = v/r0. The linear and rotational kinetic energy
are

Elin + Erot =
1

2
m0v

2 +
2

5
m0r

2
0 · ω2 =

(
1

2
+

2

5

)
m0v

2 =
9

10
m0v

2.

From E = Elin + Erot, we deduce that

v2 =
10

9
gh.

Using the trigonometric relation sin θ = h/s, and the kinematic formula v2 = 2as, we
obtain the desired relation

v2 =
10

9
gs sin θ = 2as =⇒ a0 =

5

9
g sin θ.

We can view F = m0a0 as the effective gravitational force, taking rolling into account.
More generally, if the snowball has mass m, the effective gravitational force is F = ma0.

2. Now the snowball is increasing in mass, and we should apply the impulse formula. The
change in momentum is

∆(mv) = (m+ ∆m)(v + ∆v)−mv = (m+ ∆m)∆v + v∆m.

This equals the average force applied over the time ∆t, or

(m+ ∆m)∆v + v∆m = Favg∆t =⇒ Favg = (m+ ∆m)a+ v
∆m

∆t
.

Finally, the average force is just the average of the force applied at the start of the time
period (to the snowball of mass m) and the end (mass m + ∆m). We can use the results
from the last question, since these were independent of the mass of the snowball:

Favg =
m+ (m+ ∆)

2
a0 = (m+ ∆m)a+ v

∆m

∆t
.

1A rolling stone gathers no moss.
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Rearranging gives

(m+ ∆m)a =

(
m+

1

2
∆m

)
a0 − v

∆m

∆t
.

3. As ∆t goes to zero, ∆m gets very small. It follows that

(m+ ∆m)a→ ma,

(
m+

1

2
∆m

)
a0 → ma0.

On the other hand, we can’t neglect ∆m/∆t since both the numerator and denominator
are small. Dividing both sides by m, we find

a = a0 −
v

m

∆m

∆t
.

4. The bowling ball undergoes a linear acceleration a0 down the slope. Taking both v,m > 0,
a is smaller than a0 when ∆m/∆t > 0, i.e. the snowball is getting heavier. The bowling
ball wins if the snowball is gathering snow! On the other hand, if the snowball melts in
the sun and loses mass, with ∆m/∆t < 0, then a > a0 and the snowball will win. It acts
just like a rocket, discarding mass to boost its velocity.

5. Since m = ρV = ρ(4/3)πr3, and the surface area S = 4πr2, we can write

4παr2 = 4πα

[
3m

4π

]2/3

= βm2/3,

where β is a constant defined by the equation. Substituting this into the rate of change
of the snowball’s mass, we get

∆m

∆t
=
αS

v
=
βm2/3

v
.

Then the expression from the last problem gives

a = a0 −
v

m

∆m

∆t
= a0 −

v

m
· βm

2/3

v
= a0 −

β

m1/3
.

As m gets large, the second term gets very small, and eventually a ≈ a0. The change in
mass makes a negligible contribution to the acceleration!

8



1.3 Evel Knievel and the crocodile pit

Evel Knievel rides his stunt motorcycle over a semicircular ramp of radius R. He is planning
to use this ramp to shoot his motorbike over a pit of ravenous Alabama crocodiles, of length
L, immediately after the ramp. His motorcycle can achieve a maximum speed of v, and for
simplicity, we assume Knievel can accelerate to this speed instantaneously and at will.

θ

v

R L

Figure 3: Evil Knievel jumping over a pit of crocodiles.

1. Label the angle from the horizontal by θ. What condition must v satisfy to launch Knievel
at an angle θ?

2. Show that if Knievel launches at angle θ, his airtime is

t =
1

g

[
vcθ +

√
v2c2

θ + 2gRsθ

]
,

where sθ = sin θ and cθ = cos θ.

3. Deduce that after launching at θ, his range over the crocodile pit is

r =
v2sθ
g

[
cθ +

√
c2
θ +

2gRsθ
v2

]
−R(1 + cθ).

4. The range is a very unpleasant function to optimise. Instead, let’s study a special case.
Suppose that Knievel launches horizontally at the top of the ramp with θ = π/2. What
does v need to be to clear the crocodile pit?

5. For θ = π/2, use part (1) to demonstrate that he will automatically clear the pit provided

(
√

2− 1)R > L.

Solution

1. The centripetal acceleration to keep Knievel on the ramp is just the component of gravity
directed towards its centre,

a = g sin θ.

At speed v, the effective centrifugal acceleration is v2/R. Thus, the motorbike will launch
at angle θ if

v2 > Rg sin θ.
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2. If Knievel launches at angle θ, his velocity has components

(vx, vy) = v(sθ, cθ)

where sθ = sin θ and cθ = cos θ. Since his initial height is h0 = R sin θ, the height as a
function of time is

h = h0 + vyt−
1

2
gt2 = Rsθ + vcθt−

1

2
gt2.

This is a quadratic equation, so we can find the time t to hit the ground by solving h = 0:

t =
1

2a

[
−b±

√
b2 − 4ac

]
=

1

g

[
vcθ ∓

√
v2c2

θ + 2gRsθ

]
.

To get a positive time, we choose the + symbol:

t =
1

g

[
vcθ +

√
v2c2

θ + 2gRsθ

]
.

3. If Knievel launches at angle θ, he still has to cover a horizontal distance R(1+cθ) to reach
the edge of the ramp. Thus, his range over the crocodile pit is

r = vsθt−R(1 + cθ) =
v2sθ
g

[
cθ +

√
c2
θ +

2gRsθ
v2

]
−R(1 + cθ).

4. Consider θ = π/2, so that cθ = 0 and sθ = 1. Then from the previous question, the range
is

r =
v2

g

√
2gR

v2
−R = v

√
2R

g
−R.

Thus, Knievel clears the pit provided he launches with speed

v

√
2R

g
−R > L =⇒ v >

√
g

2R
(R+ L).

5. The condition that he launches at all is v2 > Rgsθ = Rg. Even if he goes at the minimum
speed, he is guaranteed to clear the crocodiles as long as

Rg >
g

2R
(R+ L)2 =⇒

√
2R > R+ L =⇒ (

√
2− 1)R > L.
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2 Dimensional analysis and Fermi problems

2.1 Tsunamis and shallow water

Ocean waves behaves rather differently in deep and shallow water. From dimensional analysis,
we can learn a little about these differences, and deduce that waves increase in height as they
approach the shore. This phenomenon, called shoaling, is responsible for tsunamis.

λ

d

h v

Figure 4: Ocean waves. As the water gets shallower, the waves increase in height.

1. Let λ denote the wavelength of an ocean wave and d the depth of the water. Typically,
both are much larger than the height h of the wave, so we can ignore it for the time
being. Argue from dimensional analysis that in the deep water limit λ � d, the velocity
of the wave is proportional to the square root of the wavelength:

v ≈
√
gλ.

In the shallow water limit λ� d, explain why you expect

v ≈
√
gd.

2. Ocean waves can be generated by oscillations beneath the ocean floor. For a source
of frequency f , what is the wavelength of the corresponding wave in shallow water?
Estimate the wavelength if the source is an earthquake of period T = 20 min at depth
d = 4 km, and check your answer is consistent with the shallow water limit.

3. Consider an ocean wave of height h and width w. The energy E carried by a single “cycle”
of the wave equals the volume V of water above the mean water level d, multiplied by
the gravitational energy density ε. By performing a dimensional analysis on each term
separately, argue that the total energy in a cycle is approximately

E ≈ V ε ≈ ρgλwh2,

where ρ ≈ 103 kg m−3 is the density of water and g the gravitational acceleration.

4. Energy in waves is generally conserved : the factor E is constant, even as the wavelength
λ and height h of the wave change. (We will ignore spreading of the wave.) By applying
energy conservation to shallow waves, deduce Green’s law:

h ∝ 1

d1/4
.
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The increase in height is called shoaling. The relation breaks down near shore when the
depth d becomes comparable to the height h.

5. Our earthquake from earlier creates a tsunami of height h0 = 0.5 m. What is the height,
speed, and power per unit width of the tsunami close to the shore? (By “close to the
shore”, we mean at h ≈ d where Green’s law breaks down.) You may assume the shallow
water equation holds.2

Solution

1. Let’s write the dimensions of g and ρ in terms M,L, T :

[g] =
L

T 2
, [ρ] =

M

L3
.

In deep water d � λ, the wave cannot “see” the bottom of the ocean; it is too far away.
We only expect the smaller length λ to control the speed. To find the velocity v with
dimensions [v] = L/T , we can combine g, ρ and λ in precisely one way:

v =
√
gλ.

It turns out that ρ is not involved! There is no other term to cancel the dimension of mass.
Similarly, in shallow water d � λ, the depth is more important than the wavelength, so
that we instead get

v =
√
gd.

2. The velocity is related to the wavelength and frequency by v = fλ. Hence, the wave-
length of a wave in shallow water of depth d is fixed by question (2):

λ =
v

f
=

√
gd

f
.

Let’s plug in the numbers for the earthquake, noting that f = 1/T :

λ =
√

9.8 · 4000 · (20 · 60) m ≈ 237 km.

This is much larger than than the depth of the ocean, so we can consistently use the
shallow water limit.

3. For simplicity, we treat one cycle of the wave as a box, whose volume is the product of
length, width and height:

V ≈ hwλ.

If E is the dimension of energy, then ε has dimensions [ε] = E/L3. Since the energy is due
to the gravitational potential of the portion of water above the mean water level, it will

2 It doesn’t quite. We actually need to use the full formula for speed, v =
√

(gλ/2π) tanh(2πd/λ)−1, if we want to
make an accurate estimate. But here, the shallow water equation will suffice to get the correct order of magnitude.
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involve the height h, the density ρ, and the gravitational acceleration g. The gravitational
potential energy is mgh, so the energy density should be

ε ∼ ρgh.

We can get the same answer from dimensional analysis, since

[ε] =
E

L3
=
ML2

L3T 2
=
M

L3
· L
T 2
· L = [ρgh],

where we used the fact that E = ML2T−2 (using the formula for kinetic energy, for
example). Thus, the energy carried by one cycle of the wave is

E ≈ V ε ≈ ρgλwh2.

4. In shallow waves, question (3) shows that λ ∝
√
d. Since ρ, g, w are constant, we have

E ∝
√
dh2.

Taking the square root, and using the fact that E is constant, we obtain Green’s law:

hd1/4 ∝
√
E =⇒ h ∝ 1

d1/4
.

5. The wave is “close to shore” when the height is comparable to the depth of the water,
h ≈ d. We can use this, along with Green’s law and the initial height and depth, to
determine h:

hd1/4 = h5/4 = h0d
1/4
0 =⇒ h = h

4/5
0 d

1/5
0 = 40001/5 ≈ 5.25 m.

Assuming the shallow water equation holds,

v ≈
√
gd ≈

√
9.8 · 5.25 m · s−1 = 7.2 m · s−1.

The tsunami is around 5 meters high and travelling at a velocity of 7 m · s−1. This doesn’t
sound that high or fast, but is more than enough to cause catastrophic damage.

To see how much energy such a tsunami delivers, we use our expression from part
(3). To find the total power, we divide the energy delivered per wave E by the period of
the wave, T = 20 min. To find the power P per unit width, we divide by w. The result is

P =
E

Tw
≈ ρgλh2

T
= ρgvh2,

using v = λ/T . To evaluate this, we plug in the value for v we calculate, and the density
of water ρ ≈ 103 kg ·m−3. This gives

P ≈ 103 · 9.8 · 7.2 · 5.252 W ·m−1 ∼ 1 MW ·m−1.

The tsunami delivers around 1 megawatt per meter of shoreline. This is enough to power
several hundred households! Since the tsunami is supplying this amount for each metre
of shoreline, it’s not too hard to see why a tsunami of modest height can still wreak
terrible havoc.

References

• “The shallow water wave equation and tsunami propagation” (2011). Terry Tao.
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2.2 Turbulence in a tea cup

Stir a cup of coffee vigorously enough, and the fluid will begin to mix in a chaotic or turbulent
way. Unlike the steady flow of water through a pipe, the behaviour of turbulent fluids is
unpredictable and poorly understood. However, for many purposes, we can do suprisingly
well by modelling a turbulent fluid as a collection of (three-dimensional) eddies of different
sizes, with larger eddies feeding into smaller ones and losing energy in the process.

ℓ

λmin

Figure 5: A well-stirred cup of coffee. On the right, a large eddy (size ∼ `) and the
smallest eddy (size λmin) are depicted.

Suppose our cup of coffee has characteristic length `, and the coffee has density ρ. When it is
turbulently mixed, the largest eddies will be a similar size to the cup, order `, and experience
fluctuations in velocity of size ∆v due to interaction with other eddies. The fluid also has
internal drag3 or viscosity η, with units N · s/m2.

1. Let ε be the rate at which kinetic energy dissipates per unit mass due to eddies. Ob-
servation shows that this energy loss is independent of the fluid’s viscosity. Argue on
dimensional grounds that

ε ≈ (∆v)3

`
.

Why doesn’t the density ρ appear?

2. Kinetic energy can also be lost due to internal friction. Argue that the time scale for this
dissipation due to viscosity is

τdrag ≈
`2ρ

µ
.

3. Using the previous two questions, show that eddy losses4 dominate viscosity losses pro-
vided

`ρ∆v

µ
� 1.

3More precisely, viscosity is the resistance to shear flows. A simple way to create shear flow is by moving a
large plate along the surface of a stationary fluid. Experiments show that the friction per unit area of plate is
proportional to the speed we move it, and inversely proportional to the height; the proportionality constant at unit
height is the viscosity. Since layers of fluid also generate shear flows, viscosity creates internal friction.

4Since ε depends on `,∆v, you need not consider it when finding the time scale for eddy losses.
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The quantity on the left is called the Reynolds number, Re = `ρ∆v/mu. In fact, one
definition of turbulence is fluid flow where the Reynolds number is high.

4. So far, we have focused on the largest eddies. These feed energy into smaller eddies of
size λ and velocity uncertainty ∆vλ, which have an associated eddy Reynolds number,

Reλ =
λρ∆vλ
µ

.

When the eddy Reynolds number is less than 1, eddies of the corresponding size are
prevented from forming by viscosity.5 Surprisingly, the rate of energy dissipation per unit
mass in these smaller eddies is ε, the same as the larger eddies.6 Show from dimensional
analysis that the minimum eddy size is roughly

λmin ≈
(
µ3

ερ3

)1/4

.

5. If a cup of coffee is stirred violently to Reynolds number Re ≈ 104, estimate the size of
the smallest eddies in the cup.

Solution

1. Let [·] denote the dimensions of a physical quantity, and M,L, T mass, length and time
respectively. Then energy per unit mass per unit time has dimension

[ε] =
energy

MT
=
M(L/T )2

MT
=
L2

T 3
,

where we can remember the dimension for energy using kinetic energy, K = mv2/2.
(The dimension does not depend on what form of energy we look at.) The dimensions for
the remaining physical quantities are easier:

[`] = L, [ρ] =
M

L3
, [∆v] =

L

T
.

Since mass does not appear in [ε], and the viscosity is not involved in this type of dissi-
pation, the density ρ cannot appear since there is nothing besides µ to cancel the mass
units. We can easily combine ` and ∆v to get something with the correct dimension, and
deduce an approximate relationship between ε,∆v and `:

[(∆v)3]

[`]
=

L3

LT 3
= [ε] =⇒ ε ≈ (∆v)3

`
.

5Lewis Fry Richardson not only invented the eddy model, but this brilliant mnemonic couplet: “Big whirls have
little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity.”

6This is not at all obvious, but roughly, follows because we can fit more small eddies in the container. Intriguingly,
this makes the turbulent fluid like a fractal : the structure of eddies repeats itself as we zoom in, until viscosity
begins to play a role. At infinite Reynolds number, it really is a fractal!
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2. Viscosity has dimensions

[µ] =
[N][s]

[m2]
=
MLT

T 2L2
=

M

LT
.

We can combine with ρ and ` to get something with the dimensions of time; ∆v is not
involved since friction is independent of the eddies. The unique combination with the
right units is

[`2ρ]

[µ]
=
L2 ·M · LT
L3 ·M

= T =⇒ τdrag =
`2ρ

µ
.

3. Returning to eddy losses, its easy to cook up a time scale from the basic physical quanti-
ties ` and ∆v:

τeddy ≈
`

∆v
.

In order for dissipation of energy by the eddies to dominate, we require τeddy � τdrag,
that is, energy is much more quickly dissipated by the eddies than by friction. Comparing
the two expressions, we find

`

∆v
� `2ρ

µ
=⇒ `ρ∆v

µ
= Re� 1.

4. By assumption, the rate of energy dissipation ε is the same for all eddies, so the reasoning
in part (1) gives ε ≈ (∆vλ)3/λ. Rearranging, we have ∆vλ ≈ (ελ)1/3. We now set Reλ = 1

and solve for the minimum eddy size λmin:

1 = Reλ =
λρ∆vλ
µ

≈ λ4/3ε1/3ρ

µ
=⇒ λmin ≈

(
µ

ε1/3ρ

)3/4

=

(
µ3

ερ3

)1/4

.

5. There is a cute shortcut here. First, the previous question tells us how Reλ scales with λ:

Reλ ≈
ε1/3ρλ4/3

µ
= αλ4/3,

where α is a constant independent of λ. But the Reynolds number is simply the eddy
Reynolds number for λ = `, Re = Re`, and the eddy Reynolds number is unity for the
smallest eddies. Hence,

Reλmin
≈ αλ4/3

min = 1, Re ≈ α`4/3 =⇒ λ
4/3
min ≈

`4/3

Re
.

For our turbulent coffee, ` ≈ 10 cm and Re ≈ 104, so we estimate a minimum eddy size

λmin ≈
`

Re3/4
≈ 10 cm

103
= 0.1 mm.

References

• Microphysics of clouds and precipitation (2010). H. R. Pruppacher, J. D. Klett.
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Figure 6: Our cast of characters.

2.3 A Fermi free-for-all

Order of magnitude approximations, or Fermi estimates, are a fun and surprisingly powerful
approach to solving problems. Here, we offer a medley of Fermi problems, ranging from
Starbucks to stars to sneezes. There are a few techniques you may find useful:

• taking the geometric mean
√
UL of upper and lower guesses U and L for a quantity;

• factorising your answer into a string of subestimates with intermediate units; and

• using dimensional analysis and simple physics.7

You may also need data about the world (supplied) and common sense (not included).

1. We start with big numbers, and answer an age old question: are there more stars in the
sky, or grains of sand? And what about atoms in a single grain?

(a) Stars. How many stars are there in the observable universe?

Data. Astronomers count roughly 100 billion galaxies. Small dwarf galaxies have on
the order of 100 million stars, while massive elliptical galaxies can have in excess of
10 trillion stars.

(b) Sand. Estimate the number of grains of sand on all the beaches of the world.

Data. Sand particles range in size from 0.0625 mm to 2 mm. The earth has 620,000
km of coastline.

(c) Atoms. How many atoms are in an average grain of sand? Compare to the two
previous numbers, and comment on your result.

Data. Sand is made out of silicon dioxide SiO2, with molar mass 60 g. Avogadro’s
constant is NA = 6× 1023.

7“Simple physics” means to solve a caricature of the problem, where you ignore everything but the most impor-
tant mechanism.
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2. Next, we add some physics into the mix.

(a) Raindrops.

i. Using dimensional analysis, estimate the size of a raindrop.

ii. As they bang into each other, raindrops resonate like the head of a drum, since
they are under tension. What is the approximate frequency of this resonance?

Data. The surface tension of water is σ = 0.07 N/m, with dimensions [σ] = M/T 2.8

Surface tension wants to make the raindrop small; gravity wants to spread it out.

(b) Sneezes. Here’s a sillier one.

i. How much force is released in the average sneeze? No dimensional analysis
required, just regular Newtonian mechanics.

ii. How many people are required to sneeze a 1 kg cubesat9 into space?

Data. The lung capacity of an adult is around 5 L, and sneezes are emitted with a
final velocity of roughly 50 m/s. Launch velocity at the earth’s surface is 11 km/s.

3. We end with some harder “real life” Fermi estimates.

(a) Hungarian GDP. Guess the size of Hungary’s economy, measured by GDP.10

Data. Canada’s GDP is 1.6 trillion USD. India’s GDP is 2.6 trillion USD.

(b) Starbucks. Estimate the number of Starbucks stores in Seattle.

Data. Seattle city has a population of around 700,000.

Solution.

1. (a) A simple approach is to multiply the total number of galaxies by the “average” num-
ber of stars per galaxy:

stars

universe
=

stars

galaxy
× galaxies

universe
.

Of course, we don’t know the average number of stars exactly, but a useful trick we
will use again and again is to take the geometric mean of upper and lower guesses.
In this case, the lower guess is a dwarf galaxy, and the upper guess an elliptical
galaxy:

stars

galaxy
∼
√

100× 106 × 1013 ≈ 3× 1010.

This gives

stars

universe
=

stars

galaxy
× galaxies

universe
∼ 3× 1010 × 1011 ∼ 3× 1021 stars.

We estimate there are around 3× 1021 stars in the universe!

8Concretely, if I try and cut water with a knife, there is a resistance of 70 mN per metre of knife.
9A cubesat is a small, cubical satellite.

10Gross domestic product. This is the total monetary worth of all goods and services produced in a year, conven-
tionally reported in US dollars.
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(b) In this case, we’re going to estimate the volume of beach in the world and divide by
the volume of the average grain of sand. Since this problem can be treat in a more
conventional way, we use more conventional notation. We guess that the volume
of beach is the total length of the world’s coastline, multiplied by the percentage
which has beach, multiplied by the average width and depth of a beach:

Vbeach = Lcoastline × pbeach × wbeach × dbeach.

We have the coastline, but everything else we have to estimate. A lot of the world’s
coastline is beach, but some of it has cliffs, rocks, ice, etc. Let’s set pbeach = 70%.
What about the width and depth of an average beach? Of course the profile will
vary, but a small beach might be a few meters, and a large beach 50 meters, so we
will take the mean:

wbeach ∼
√

1× 50 m ≈ 7 m.

Finally, from the way beaches grade into the water, I would guess the depth of sand
is usually a couple of meters, say dbeach ∼ 2 m. This gives

Vbeach ∼ 620, 000 km× 0.7× 7 m× 2 m ≈ 6.2× 109 m3.

Now for the grain of sand. We’ve been given the official geological lower and upper
bound on grain size, so we just take the geometric mean and hope this is about the
average grain size:

dgrain ∼
√

0.0625× 2 mm ≈ 0.35 mm.

Assuming (for simplicity) that grains are tiny cubes, we guess the average volume
us

Vgrain ∼ 0.353 mm3 ≈ 4.3× 10−10 m3.

The number of grains of sand is then estimated to be

Vbeach

Vgrain
∼ 6.2× 109 m3

4.3× 10−10 m3
≈ 1.4× 1019.

That’s a lot, but falls a few orders of magnitude short of stars in the universe!

(c) We already calculated Vgrain in the last problem. To find its mass, we can estimate
the density. Sand sinks in water, so we know it has to be heavier than water, let’s
say twice as heavy. Then the mass of an average grain is

mgrain ∼ 2ρwater × Vgrain ∼ (2× 10−3 g/mm3)× 0.43 mm3 ≈ 8× 10−3 g.

Now we divide by the molar mass to learn how many moles of SiO2 are in there:

NSiO2 =
mgrain

MSiO2

∼ 8× 10−3 g

60 g
≈ 1.3× 10−4.

Since there are three atoms in each silicon dioxide molecule, the total number of
atoms is

3×NSiO2 ×NA ∼ 3× (1.3× 10−4)× (6× 1023) ≈ 3× 1020.

There are more atoms in a grain of sand than grains of sand on the world’s beaches.
And a handful of sand has more atoms than stars in the universe!
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2. (a) i. Here are a few facts we will need:

• the surface gravity of earth is g ≈ 10 m/s2, with dimensions [g] = L/T 2;

• water has a density ρ ≈ 103 kg/m3 with dimension [ρ] = M/L3;

• the surface tension has dimensions [σ] = M/T 2.

There is only one way of combining these parameters to get something with
the dimensions of length. We divide the surface tension by the water density to
cancel out the mass dimension M , then divide by surface gravity to cancel the
dimension of time:[

σ

ρ

]
=
M/T 2

M/L3
=
L3

T 2
,

[
σ

ρ
· 1

g

]
=
L3/T 2

L/T 2
= L2.

This has the dimensions of length squared, so we take the square root and get
a guess for the size of a rain droplet:

` ∼ σ

ρg
≈
√

0.07

103 × 10
≈ 2.6 mm.

Raindrops have different sizes, but apparently “medium size” raindrops are in
the range 1.7–3.2 mm. Our guess is correct!

ii. Now we estimate the frequency of vibrating raindrops. Gravity has nothing to
do with the vibration of drumhead, and similarly, for the vibration of a raindrop
it plays no role. Our goal is to obtain something with dimensions of frequency,
1/T , using properties of the raindrop itself. Since the units of surface tension
are M/T 2, if we divide by the mass of the raindrop, m ∼ (4π/3)ρr3, we will
get something with units 1/T 2, where r is the radius we just determined. The
square root will have the correct dimensions! We therefore guess that

f ∼
√
σ

m
≈

√
0.07

1000× (4π/3)(0.0026)3
≈ 30 Hz.

So clashing raindrops should vibrate once every couple of seconds.

(b) i. The volume of air released in a sneeze varies, but for a lung capacity of 5 L, the
average sneeze probably releases a parcel of air with volume ∼ 2 L. The density
of air is ρ = 1 kg/m3, so the mass of the air released is

m = ρV ∼ (1 kg/m3)× 2 L = (1 kg/m3)× 2× 10−3 m3 = 2 g.

A sneeze lasts maybe half a second, ∆t ≈ 0.5 s. If the final velocity is around
v ≈ 50 m/s, then the formula for impulse gives us the average force:

F =
psneeze

=
mv

∆t
=

2 g× 50 m/s

0.5 s
≈ 0.2 N.

ii. To release a 1 kg cubesat into space, it needs momentum

pcubesat = mcubesatvescape = 11× 103 kg ·m/s.
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Assuming all the linear momentum of the sneeze can somehow be imparted to
the cubesat (unlikely, but we don’t actually care about the logistics of our sneeze
launcher), the number of sneezers required is just

N ∼ pcubesat

psneeze
=

11× 103

0.1
≈ 105 people.

It looks like we would need around 100,000 people to sneeze the cubesat into
space.

3. (a) One approach is to factorise using people as an intermediate unit:

GDP

Hungary
=

GDP

person
× people

Hungary
.

The second factor is just the population of Hungary. You probably know that Hun-
gary is a small country in Eastern Europe, so it seems reasonable to guess it’s pop-
ulation is half of Canada’s (40 million):

people

Hungary
∼ 20 million.

The first factor is the GDP per capita, which is correlated roughly with the standard
of living in a country. This is where the data given become useful! Canada has a
very high standard of living; India has a much lower standard of living. Hungary is
probably somewhere in between. We will therefore try to take a geometric average
of the GDP per capita for Canada and India:

Hungary GDP

Hungary population
∼

√
Canada GDP

Canada population
× India GDP

India population
.

You have been given the GDP of Canada and India, but we have to input the popu-
lations. Canada, as we’ve said, it roughly 40 million, while India, like China, has a
huge population of around 1 billion. So we plug in the numbers to find

Hungary GDP

Hungary population
∼ USD$10, 000.

Our final estimate is

GDP

Hungary
=

GDP

person
× people

Hungary

∼ 20× 106 ×USD$10, 000

∼ USD$200 billion.

The actual GDP of Hungary: USD$140 billion! Our guess is pretty close.
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(b) We’ll use a similar approach to the famous piano tuner problem (see forthcoming
notes on Fermi estimates). We’ll start by introducing the natural intermediate unit
of people,

Starbucks

Seattle
=

Starbucks

person
× people

Seattle
.

The second factor is just the population of Seattle, which we know is 700,000. To
estimate the first factor easier, let’s introduce another intermediate unit, namely
orders per day:

Starbucks

person
=

Starbucks

orders
× orders

person
.

We’ll leave the time frame implicit to cut down on notational clutter. Now, the
first factor here is the reciprocal of the number of orders that a Starbucks store
processes every day. I’m guessing that at busy times a store could do something
like 10 orders a minute, and at slow times around 1 order a minute. The geometric
mean is

√
10× 1 ≈ 3 orders a minute, so over an 8 hour day, this leads to a total

number of orders
orders

Starbucks
∼ 8× 60× 3 = 1440.

What about orders per person? In Seattle, I guess maybe 1 in 3 people order a
coffee each day (again, I can get this averaging 1 and 10). We are led to the final
guess

Starbucks

Seattle
∼ Starbucks

order
× order

person
× people

Seattle

≈ 1

1440
× 1

3
× 700, 000 ≈ 160 stores.

According to Statista, Seattle has 142 Starbucks stores. We’re pretty close!
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3 Gravity

3.1 Getting a lift into space

A space elevator is a giant cable suspended between the earth and an orbiting counterweight.
Both the cable and counterweight are fixed in the rotating reference frame of the earth. The
elevator can be used to efficiently transport objects from the surface into orbit, but also as a
cheap launchpad.

rgeo
R

R+L

Figure 7: A satellite in geostationary orbit at radius rgeo. A space elevator connects
a counterweight in low orbit to the surface via a cable of length 2L. The cable’s
centre of mass lies at radius R, above rgeo.

1. To begin with, forget the cable, and consider a geostationary satellite orbiting at a fixed
location over the equator.

• Determine the radius rgeo of a geostationary orbit in terms of the mass of the earth
M and angular frequency ω about its axis.

• Confirm that rgeo obeys Kepler’s third law, i.e. the square of the orbital period is
proportional to the cube of the radius.

2. To make the space elevator, we now attach a cable to the satellite. The satellite acts as
a counterweight, pulling the cable taut, but needs to move into a higher orbit in order
to balance the cable tension. Provided this orbit is high enough, the space elevator will
double as a rocket launchpad. Show that objects released from the elevator at resc =

21/3rgeo will be launched into deep space.

3. The dynamics of the elevator itself are complicated, so we will consider a simplified
model where the cable is treated as a rigid rod of length 2L, with all of its mass concen-
trated at the centre, radius R. The counterweight is therefore at radius R+ L.

• Find the exact relationship between L, R, and the earth’s mass M and rotational
period ω.

• Assuming L� R, show that the rod’s centre of mass is further out than the geosta-
tionary radius rgeo. This somewhat counterintuitive result also holds for real space
elevator designs! You may use the fact that, for x� 1,

1

1 + x
≈ 1− x.
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Solution

1. The gravitational acceleration is given by Newton’s law of gravitation:

a =
GM

r2
geo

.

The centrifugal acceleration is

a =
v2

rgeo
= ω2r.

Equating the two, we find

r3
geo =

GM

ω2
.

Since ω ∝ 1/T , where T is the period of the orbit, Kepler’s third law is obeyed.

2. Since the whole elevator is geostationary, it rotates with angular frequency ω. At radius
resc, the speed is v = ωresc. We recall that the gravitational potential is U = −GMm/r.
Finally, we can determine resc by demanding that the total energy vanish:

E = U +K = m

(
1

2
ω2r2

esc −
GM

resc

)
= 0 =⇒ r3

esc =
2GM

ω2
= 2r3

geo.

3. Treat the rod as concentrated at its centre of mass at radius R. In order for the rod
and the satellite to have the same angular velocity, we require the forces in the rotating
reference frame to balance:

ω2[(R− L) + (R+ L)] = 2Rω2 = GM

[
1

(R− L)2
+

1

(R+ L)2

]
=

2GM(R2 + L2)

(R2 − L2)2
.

Rearranging, we find that
GM

ω2
=
R(R2 − L2)2

(R2 + L2)
.

If L� R, then (L/R)2 � 1 and hence

1

R2 + L2
=

1

R2(1 + L2/R2)
≈ 1

R2

(
1− L2

R2

)
,

using our approximation 1/(1 + x) ≈ 1− x. It follows that

GM

ω2
≈ 1

R
(R2 − 2L2)(R2 − L2) ≈ R3 − 3RL2.

Comparing to the radius of the geostationary orbit, we find

r3
geo ≈ R3 − 3RL2,

which implies that rgeo < R.
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3.2 Hubble’s law and dark energy

If we point a telescope at random in the night sky, we discover something surprising: faraway
galaxies and stars are all moving away from us.11 Even more surprising, the speed v of any
object is proportional to its distance d from the earth, with

v = Hd.

The parameter H is called the Hubble constant (though it can in fact change), and the relation
between velocity and distance is called Hubble’s law.

time

Big Bang

distance

Figure 8: The cosmic balloon, inflated by dark energy.

A simple analogy helps illustrate. Imagine the universe as a balloon, with objects (like the
stars in the image above) in a fixed position on the balloon “skin”. Both the distance and
relative velocity of any two objects will be proportional to the size of the balloon, and hence
each other. The constant of proportionality is H.

1. The universe is expanding. Explain why Hubble’s law implies that it does so at an accel-
erating rate.

2. The Virgo cluster is around 55 million light years away and receding at a speed of
1200 km s−1. By running time backwards, explain why you expect a Big Bang where ev-
erything is located at the same point. From the Virgo cluster and Hubble’s law, estimate
the age of the universe.

3. Since gravity is an attractive force, the continual expansion of the universe is somewhat
mysterious. Why doesn’t all the mass collapse back in on itself? The answer to this
question is dark energy. Although we’re not entirely sure what dark energy is, we can
model it as an energy density ρ due to empty space itself. This energy does not change
with time, since the vacuum always looks the same.

11How? Well, we know what frequencies of light stars like to emit since they are made of chemicals we find
on earth. These frequencies are Doppler-shifted, or stretched, if the stars in a galaxy are moving away from us,
allowing us to determine the speed of recession. Distance is a bit harder to work out, with different methods
needed for different distance scales.
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The state-of-the-art description of gravity is Einstein’s theory of general relativity. For
our purposes, all we need to know is that gravitational effects are governed by Newton’s
constant G and the speed of light c, where

G = 6.67× 10−11 N ·m2 · kg−2, c = 3× 108 m s−1.

Using dimensional analysis, argue that Hubble’s constant is related to dark energy by

H2 =
ηGρ

c2

for some (dimensionless) number η. This is the Friedmann equation.

4. Assuming that η ∼ 1, estimate the dark energy density of the universe.

Solution

1. Hubble’s law says that
v = Hd.

Assuming that H is constant, the rate of change of the left side is just the acceleration a,
while the rate of change of the right side is v, multiplied by the constant H. So

a = Hv = H2d.

Since the universe is expanding, d increases with time. Hence, the acceleration also
increases with time!

2. Let’s run time backwards until a faraway object collides with us. If the distance is d, and
the velocity v, then by Hubble’s law the time needed to hit us is

tcollision =
d

v
=

1

H
.

Since this is the same for any object, it suggests that a time tcollision, every object in the
universe was in the same place. This must be the Big Bang! The age of the universe is
then tcollision, which we can estimate from the Virgo cluster as

tcollision =
d

v
=

53× 106 × (3× 108 m/s)

1.2× 106 m/s
years ≈ 13.75× 109 years.

We guess the universe is about 13.75 billion years old. The current best estimate is 13.80

billion years!

3. We let L,M, T denote the dimensions of length, mass and time respectively. We know
from the previous question that H has the units of inverse time, [H] = T−1, and the
speed of light clearly has dimensions [c] = L/T . We can also find the dimensions of G
from the dimensions of the Newton:

[N] =
ML

T 2
=⇒ [G] =

[N][m]2

[kg]2
=

L3

T 2M
.
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Finally, since the dimensions of energy are [E] = ML2/T 2, the dimensions of energy
density (energy over volume) are

[ρ] =
[E]

[V ]
=

M

LT 2
.

Let’s look for an equation of the form

Hα = ηGβcγρδ

which has dimensions

1

Tα
= η

(
L3

T 2M

)β (
L

T

)γ ( M

LT 2

)δ
= η

(
L3β+γ−δM δ−β

T 2β+γ+2δ

)
.

This looks hard, but there is no mass or length on the LHS so

δ − β = 3β + γ − δ = 0 =⇒ 2β + γ = 0.

But then, matching powers of time on both sides,

α = 2β + γ + 2δ = 2δ.

The simplest way to satisfy all of these constraints is β = δ = 1 and α = −γ = 2. This
gives us the Friedmann equation

H2 =
ηGρ

c2
.

4. To find the density of dark energy, we can simply invert the Friedmann equation to make
ρ the subject, and plug in the age of the universe calculated in part (a):

ρ ∼ c2H2

G
=

(3× 108)2

(6.67× 10−11)(13.75× 109 × 365× 24× 602)2

J

m3
≈ 7× 10−9 J

m3
.

Doing the full gravity calculation shows that η = 8π/3 ∼ 10, so our answer is too large by
a factor of around 10. Accounting for this, we guess ρ ∼ 10−9J/m3, which matches the
current best estimate to within an order of magnitude.12

12 In fact, ρ is the total energy density of the universe, including things besides dark energy. While dark energy
density does not change with time, other forms of energy are diluted as the universe expands; from the Friedmann
equation, this means that H changes with time. Indeed, in the past H was very different. However, dark energy
constitutes around 70% of the total density, explaining why our estimate here is still reasonably accurate. It also
explains why H is approximately constant, at least in the current epoch of expansion.
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3.3 Gravitational postal service

Mega-corporation Mammonzon drills a hole through the centre of the earth and sets up an
antipodal delivery service, dropping packages directly through to the other side of the world.
Your job, as a new Mammonzon employee, is to determine package delivery times! You soon
realise that there is a complication: the strength of gravity changes as the package moves
through the tunnel. To help out, your boss recommends Newton’s Principa Mathematica,
which provides a marvellous result called the Sphere Theorem:

• an object outside a spherical body (of constant density) is gravitationally attracted to it
as if all the mass were concentrated at the centre;13

• an object inside a spherical shell feels no gravitational attraction to the shell.

We can use the Sphere Theorem, and a surprising analogy to springs, to work out the package
transit time.

x~

a~

ω

m x
k

Figure 9: Left. A package travelling through the hole in the middle of the earth.
Middle. The sphere theorem; the red mass feels no attraction to the shell, and
attraction to the inner sphere as if all the mass were concentrated at the centre.
Right. Phasor approach to solving the spring-mass problem.

1. Let r denote the radial distance from the centre of the earth. From the Sphere Theorem,
show that a package at position r is subject to a gravitational force

F =
(mg
R

)
r

directed towards the centre, where R is the radius of the earth and g the gravitational
acceleration at the surface.

2. The force on the package is proportional to the distance from the centre. This is just
like a spring! Let’s understand springs first, then return to the delivery problem. If we
attach a mass m to a spring of stiffness k, and pull the mass a distance x away from the
equilibrium position, there is a restoring force

F = −kx.
13This explains why we always just treat planets as point masses in gravity problems.
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If we displace the mass and let it go, the result is simple harmonic motion, where the
mass just oscillates back and forth. To understand this motion, we can use the phasor
trick. The basic idea is to upgrade x to a complex variable x̃ = reiωt in uniform circular
motion on the complex plane. Treating the acceleration ã and position x̃ as phasors,
show that the phasor satisfies

ã = −ω2x̃.

Just so you know, you don’t need any calculus!

3. Conclude that the phasor satisfies a spring equation for

k = ω2m.

4. We must return to the harsh realities of the real line. To pluck out a real component of
the phasor, we can use Euler’s formula:

eiωt = cos(ωt) + i sin(ωt).

By taking the real part of the phasor solution, show that a mass m oscillates on a spring
of stiffness k according to

x(t) = x(0) cos(ωt), ω =

√
k

m
,

where it is released from rest at x(0).

5. Using questions (1) and (4), argue that the package reaches the other side of the world
in time

tdelivery = π

√
R

g
.

Solution

1. Using the second part of the Sphere Theorem, a package at radius r only feels gravita-
tional attraction to the mass within a sphere of radius r; the rest is a shell it feels no
attraction. Moreover, by the first part of the Sphere Theorem, we can concentrate all the
mass of the sphere at the centre, so the force is simply

F =
GM(r)m

r2
,

where M(r) is the mass enclosed in the smaller sphere. If the mass of the earth is M ,
and it is constant density, then M(r) is just

V (r)

V (R)
M =

r3M

R3
.

We also know that the acceleration at the surface is

g =
GM

R2
.

It follows that

F =
GM(r)m

r2
=
GMmr

R3
=
(mg
R

)
r.
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2. Hopefully you remember that for uniform circular motion, the velocity v is related to the
angular velocity ω and radius r by v = ωr. The magnitude of acceleration is related to
velocity by

|ã| = v2

r
=
ω2r2

r
= ω2r.

The acceleration is due to a centripetal force, so it is antiparallel to x̃. Thus, we discover
that

ã = −ω2reiωt = −ω2x̃.

3. If we assume a mass m is in uniform circular motion, our phasor result shows that

ma = −mω2x.

We can identify the RHS with the restoring force due to a spring, provided k = mω2.

4. We have the phasor result
x̃(t) = reiωt

for ω =
√
k/m and some fixed r we will interpret in a moment. Taking the real part gives

x(t) = <[x̃(t)] = r<[eiωt] = r cos(ωt).

At t = 0, x(0) = r is at its maximum extension (since | cos(ωt)| ≤ 1) and momentarily at
rest. The real part therefore corresponds to releasing the mass at rest at r.14 You may
be worried that taking the real part spoils the relationship between a and x. It doesn’t!
The reason is simply that ã = −ω2x̃ can be viewed as a vector statement, true for all
components (i.e. the real and imaginary parts) as well as the vectors as a whole.

5. Going back to our result from (1), recall that we have something formally identical to a
spring-mass system:

F =
(gm
R

)
r = ma.

The corresponding angular frequency is

ω =

√
gm/R

m
=

√
g

R
.

Now, a full period in the cosine cos(ωt) occurs when

ω(t+ T )− ωt = ωT = 2π =⇒ T =
2π

ω
.

But the transit time for a package from one side of the earth to the other is precisely half
a period. We finally learn the package delivery time is

tdelivery =
1

2
T =

π

ω
= π

√
R

g
.

14In general, we need to take some linear combination of sines and cosines, but that is a topic for another time!
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3.4 Donuts and wobbly orbits

Take a square of unit length. By folding twice and gluing (see below), you can form a donut.
Particles confined to the donut don’t know it’s curved; it looks like normal space to them,
except that if they go too far to the left, they will reappear on the right, and similarly for the
top and bottom. Put a different way, the blue lines to the left and right are identified, and
similarly for the red lines. This is just like the video game Portal !

0 1
0

1

x

y

Figure 10: Folding and gluing a square to get a donut. The earth has a wobbly
donut orbit (highly exaggerated) due to its attraction to Jupiter.

1. Suppose we have two particles, and shoot them out from the origin at t = 0. One particle
travels vertically in the y direction with speed vy, and the other travels in the x direction
with speed vx. Will they ever collide? If so, at what time will the first collision occur?

2. Now consider a single particle with velocity vector v = (vx, vy). Show that the particle
will never visit the same location on the donut twice if the slope of its path cannot be
written as a fraction of whole numbers. Such a non-repeating path is called non-periodic.

The earth orbits the sun, but feels a slight attraction to other planets, in particular the gas
giant Jupiter. This attraction will deform the circular15 orbit of the earth onto the surface
of a donut, travelling like the particle in question (2). Sometimes, these small changes can
accumulate over time until the planet flies off into space! This is obviously something we want
to avoid. There is a deep mathematical result16 which states that the orbit on the donut will
be stable provided it is non-periodic. Periodic donut orbits, on the other hand, will reinforce
themselves over time and create instabilities. This is like pushing a swing in sync with its
natural rhythm: eventually, the occupant of the swing will fly off into space as well!

3. Regarding the x-direction as the circular direction around the sun, and y as the direction
of the wobbling due to Jupiter, it turns out that

vy
vx

=
TJupiter

Tearth
.

If the relative size of orbits is RJupiter = 5REarth, will the earth remain in a stable donut-
shaped orbit? Hint: You may use the fact that

√
125 cannot be written as a fraction.

15In fact, the orbit is slightly stretched along one direction to form an ellipse, but we will ignore this point. One
complication at a time!

16Called the KAM theorem after Kolmogorov, Arnol’d and Moser.
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Solution

1. Since the first particle travels on the red line (y-axis) and the second particle travels on
the blue line (x-axis), they will only collide if they both return to the origin at the same
time. But this means that both must travel an integer distance in the same time, so for
some natural numbers mx,my, and some time t,

vxt = mx, vyt = my.

Dividing one equation by the other, we find that the ratio of velocities must be a fraction:

vx
vy

=
mx

my
.

If mx,my have no common denominators, then the first time the particles coincide for
t > 0 is when vxt = mx and vyt = my, so t = vx/mx = vy/my. If the ratio of velocities is
not a fraction, they can never collide.

2. This is just the first problem in disguise! The two particles get associated to the x and
y coordinates of the single particle. To begin with, suppose the particle starts at the
origin at t = 0. Let’s look for conditions which stop it from returning there. From the
first problem, it will never return to the origin as long as vx/vy is irrational. But there is
nothing special about the origin; the same reasoning shows that if the ratio of velocity
components is irrational, it will never return to any position it occupies.17

3. Kepler’s third law states that the radius of an orbit R and the period T (i.e. the length of
the year on the planet) are related by

T 2 = αR3

for some constant α which is the same for all planets. Thus,

TJupiter

Tearth
=

√
αR

3/2
Jupiter

√
αR

3/2
earth

= 53/2 =
√

125.

Since this cannot be expressed as a fraction, the results of part (2) show that the orbit is
non-periodic. This means that the earth should stay in a stable donut orbit forever!18

17Something even more remarkable happens: the one-dimensional trajectory of the particle manages to fill in
most of the the two-dimensional surface of the donut! (It visits everywhere except a miniscule subset of area zero.)

18In fact, Jupiter’s orbit is only approximately five times larger. But it remains true that a Jupiter year is some
irrational number of earth years, which is the key to the stability of the earth’s orbit.
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4 Black holes

4.1 Colliding black holes and LIGO

When a star runs out of nuclear fuel, it can collapse under its own weight to form a black hole:
a region where gravity is so strong that even light is trapped. Black holes were predicted
in 1915, but it took until 2015, 100 years later, for the Laser Interferometer Gravitational-
wave Observatory (LIGO) to observe them directly. When two black holes collide, they emit
a characteristic “chirp” of gravitational waves (loosely speaking, ripples in spacetime), and
through an extraordinary combination of precision physics and engineering, LIGO was able to
hear this chirp billions of light years away.

M1 M2

+

+ ≥

=

Mfinal

A1 A2+ ≤ Afinal

Figure 11: On the left, a cartoon of a black hole merger. On the right, inequalities
obeyed by mergers: the mass of the final black hole can decrease when energy is
lost (e.g. to gravitational waves), but the area always increases.

1. An infinitely dense point particle of mass M will be shrouded by a black hole. Using
dimensional analysis, argue that this black hole has surface area

A =

(
ηG2

c4

)
M2

for some dimensionless constant η.

2. One of Stephen Hawking’s famous discoveries is the area theorem: the total surface
area of any system of black holes increases with time.19 Using the area theorem, and the
result of part (1), show that two colliding black holes can lose at most 29% of their energy
to gravitational waves. (Note that to find this upper bound, you need to consider varying
the mass of the colliding black holes, and to assume that any lost mass is converted into
gravitational waves.)

3. LIGO detected a signal from two black holes smashing into each other 1.5 billion light
years away. Their masses were M1 = 30M� and M2 = 35M�, where M� ≈ 2 × 1030 kg

is the mass of the sun, and the signal lasted for 0.2 seconds. Assuming the maximum
amount of energy is converted into gravitational waves, calculate the average power

19This theorem is actually violated by quantum mechanics, but for large black holes, the violations are small
enough to be ignored.
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PBH emitted during the collision. Compare this to the power output of all the stars in the
universe, Pstars ∼ 1049 W.

Solution

1. A black hole, by definition, is a gravitational trap for light. It will therefore involve
Newton’s constant G, which is related to the strength of gravity, and the speed of light c.
The mass of the particle is also relevant, since we expect a heavier particle to correspond
to a larger black hole. We denote the units of a quantity by square brackets, [·]. Obviously,
[M ] = mass and [c] = distance/time. From Newton’s law of gravitation,

F =
GMm

r2
=⇒ [G] =

[F ][r]2

[M ]2
=

length3

time2 ·mass
,

where we used

[F ] = [ma] = mass · length

time2 .

Area has the units of length2. We can systematically analyse the units using simultaneous
equations, but here is a shortcut: time doesn’t appear in the final answer, so we must
combine G and c as G/c2, which has units

[Gc−2] =
length

mass
.

To get something with units length2, we must square this and multiply by M2. It follows
that, up to some dimensionless constant η, the area of the black hole is

A =

(
ηG2

c4

)
M2.

2. Consider two black holes of mass M1,M2. The initial and final area are

Ainit = A1 +A2 =
ηG2

c4
(M2

1 +M2
2 ), Afinal =

(
ηG2

c4

)
M2

final.

If Ainit = Afinal, we have maximal loss of mass; if Mfinal = M1 +M2, we minimise the mass
loss. The percentage of mass lost will depend on the mass of the black holes, but to place
an upper bound, we want to choose the masses to maximise the fraction of mass lost.
The simplest way to proceed is to instead look at the difference of squared masses,

∆M2 = M2
final −M2

1 −M2
2 = (M1 +M2

2 )2 −M2
1 −M2

2 = 2M1M2.

Since we only care about the fraction lost, we can require a total initial mass M =

M1 +M2 for fixed M , and now try to choose M1,M2 to maximise the square of mass lost:

∆M2 = 2M1M2 = 2M1(M −M1).

This is just a quadratic in M1, with roots at M1 = 0 and M1 = M . The maximum will
be precisely in between, at M1 = M/2. Of course, maximising the square of lost mass
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should be the same as maximising the lost mass itself, so we obtain an upper bound on
mass loss in any black hole collision by setting M1 = M2, with a fractional loss

1− Mfinal

M1 +M2
= 1−

√
M2

1 +M2
1

M1 +M1
= 1−

√
2

2
≈ 0.29.

Since the mass can be converted into gravitational waves, we have the 29% bound we
were looking for!

3. From the last question, we know that we maximise the energy converted into gravita-
tional waves when the total area doesn’t change,

Afinal = A1 +A2 =
ηG2

c4
(M2

1 +M2
2 ) =

(
ηG2

c4

)
M2

final.

This corresponds to a loss of mass

∆M = M1 +M2 −Mfinal = M1 +M2 −
√
M2

1 +M2
2 ≈ 18.9M�.

We can convert this to energy using the most famous formula in physics, E = mc2. To
find the average power P , we divide by the duration of the signal t = 0.2 s. We find

PBH =
E

t
=

∆Mc2

t
=

18.9 · 2 · 1030(3× 108)2

0.2
W ≈ 1.7× 1049 W.

Since PBH > Pstars, we see that for a brief moment, colliding black holes can outshine all
the stars in the universe!20

References

• “Gravitational radiation from colliding black holes” (1971). Stephen Hawking.

20This suggests that black hole mergers should be easy to see, but the analogy to starlight is misleading. Light
likes to interact with things and can be easily absorbed, e.g. by the rods and cones in your eye, or the CCDs in
a digital camera. In contrast, gravitational waves simply pass through matter, wobbling things a little as they go
by. This wobbling is very subtle; so subtle, in fact, that an isolated observer can never detect it! But if we very
carefully compare the paths of two photons going in different directions, we can discern the wobbling. This is why
LIGO has two giant arms at right angles: one for each photon path.

35

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.26.1344


4.2 Einstein rings

According to general relativity, Einstein’s theory of gravity, massive objects curve space itself.
Even massless particles like light rays will be deflected as they try to find the shortest path
between A and B. This effect is called gravitational lensing, since a heavy body acts like a lens.

b
θ

d

D

θE

2θE

Figure 12: Einstein ring, gravitationally lensed by a large star.

1. Suppose that a light ray passes a spherical star of mass m and radius R, a distance
b > R from the centre. The angle of deflection θ is dimensionless (in radians). Using
dimensional analysis, argue that it takes the form

θ = c0 + c1x+ c2x
2 + · · ·

for dimensionless constants c0, c1, c2, . . ., and

x =
Gm

bc2
.

The speed of light is c = 3× 108 m/s and Newton’s constant is G = 6.7× 10−11 m3/kg s2.

Hint. You may assume the wavelength of light isn’t relevant, since only the mass m = 0

determines its path in spacetime. Why isn’t the radius of the star relevant?

2. By considering the limit where the star disappears altogether, m→ 0, explain why c0 = 0.

3. Using parts (1) and (2), argue that for Gm� bc2,

θ ∼ Gm

bc2
.

As usual, the ∼ includes the unknown constant c1.

Imagine that a star lies directly between a galaxy and a telescope on earth.The galaxy is a
distance D away from the earth, and the star a distance d. Define the angle θE and deflection
angle θ as in Fig. 4.2.

4. Assuming the angles are small, argue that

b ≈ θEd, θED ≈ θ(D − d).
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5. Combining the identities in (4) with (3), deduce that

θE ∼
√
Gm(D − d)

c2Dd
.

You can repeat this argument, rotating in a circle around the line formed by the galaxy,
star and observer on earth. We learn that the galaxy will appear as a ring, called an
Einstein ring, of (angular) Einstein radius θE .

6. Explain why we don’t observe Einstein rings around the sun. The sun has mass m� =

2× 1030 kg, radius R� = 7× 108 m, and is d = 150× 109 m from earth.

Solution

1. The radius of the star is irrelevant due to the sphere theorem: bodies outside a uniform
sphere of mass m are gravitationally attracted to the sphere as if all the mass were
concentrated at the centre.21 We are also told that the wavelength of light is irrelevant.
This leaves a few important parameters:

• the mass m of the star, with dimension of mass [m] = M ;

• the distance b at which the light ray is deflected, dimension length [b] = L;

• the speed of light c, dimensions [c] = L/T ;

• and finally Newton’s constant G, governing the strength of gravity, which has di-
mensions [G] = L3/MT 2 from the units.

There is a unique way to combine these to get a dimensionless constant:

x =
Gm

bc2
,

as you can easily check.22 The deflection angle θ is dimensionless, provided we use
radians. Since x can be raised to any power and still be dimensionless,23 we have to
write our dimensional guess as a sum of all these possibilities:

θ ∼ c0 + c1 + c2x
2 + · · ·

2. When the star disappears, m → 0, and there should be no deflection at all: θ = 0. But
when m disappears, all the positive powers of x vanish, and we are left with θ = c0. So
we conclude that c0 = 0.

3. By definition, Gm� bc2 means

x =
Gm

bc2
� 1.

21In general relativity, the corresponding statement is known as Birkhoff’s theorem.
22A simple argument is that the only way to cancel the units of time is to have G/c2; to cancel units of mass we

need Gm/c2; and finally, to cancel units of length we take Gm/bc2.
23You might wonder we why don’t add powers of x−1 = bc2/Gm. The simple answer is that they predict an

infinite answer when the mass is small, which as we will see in the next question, is not the case.
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It follows that
θ = c1x+ c2x

2 + · · · ≈ c1x,

since higher powers of x are much smaller. Ignoring the constant c1,24 we have the
dimensional analysis result that

θ ∼ Gm

bc2
.

4. From the diagram, we have tan θE = b/d. But for small angles, tan θE ≈ θE , so we find
that

b ≈ θEd.
From the diagram, h ≈ θED ≈ θy for small angles.

θ

θE

θ

D
D–d

y
h

θ–θE

But for θ, θE � 1, the small angle approximation gives

D − d
y

= cos(θ − θE) ≈ 1 =⇒ y ≈ D − d.

So we deduce that θED ≈ θ(D − d).

5. Combining our previous results, we obtain

θE
D

D − d
≈ θ ∼ Gm

bc2
≈ Gm

θEdc2
.

Rearranging to make θE the subject, and taking a square root, we find as required that

θE ∼
√
Gm(D − d)

c2Dd
.

6. To see an Einstein ring, we require the size of the ring image at distance d to be larger
than the radius R of the star, or θEd > R. But

θEd ∼
√
Gmd(D − d)

c2D
.

The expression involving the distance looks tricky, but assumes a maximum of d:

d(D − d)

D
<
dD

D
= d.

Thus, the condition to see Einstein rings from a source at any distance is Gmd/c2R2 > 1.
We can plug numbers into this ratio and check its value for the sun:

Gmd

R2c2
=

(6.7× 10−11)(2× 1030)(150× 109)

(3× 108)2(7× 108)2
≈ 0.0005.

Since this is much less than 1, we have no hope of seeing solar Einstein rings!

24 Different theories of gravity make different predictions for c1: Newtonian gravity predicts c1 = 2, while
Einstein’s general relativity predicts c1 = 4. In 1919, Arthur Eddington was able to precisely check the deflection
of starlight during a solar eclipse, and found that Einstein was correct!
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4.3 Black hole hard drives

Black holes are perhaps the most mysterious objects in the universe. For one, things fall in
and never come out again. An apparently featureless black hole could conceal an elephant,
the works of Shakespeare, or even another universe! Suppose we wanted to describe all the
possible objects that could have fallen into the black hole, but using binary digits (bits) 0 and
1, the language of computers. With one bit, we can describe two things, corresponding to 0

and 1; with two bits, we can describe four things, corresponding to 00, 01, 10, 11. Continuing
this pattern, with n bits we can describe 2n things, corresponding to the 2n sequences of n
binary digits. The total number of bits needed to describe all the possibilities, for a given
black hole, is called the entropy S. Since information is also stored in bits, we can (loosely)
equate entropy and information!

We would expect that a large black hole can conceal more than a small black hole, and
will therefore have a larger entropy. The area law, discovered by Stephen Hawking and Jacob
Bekenstein, shows that this is true, with the entropy of the black hole proportional to its
surface area A:

S =
A

A0
,

where A0 ≈ 10−69 m2 is a basic unit of area. We can view the black hole surface as a sort of
screen, made up of binary pixels of area A0.

1 0
00

1 1

1

0
BLACK HOLE
COMPUTER SYSTEMS

Figure 13: Left. The area law, viewed as pixels on the black hole surface. Right. A
spherical hard drive.

The Second Law of Thermodynamics states that the total entropy of a closed system always
increases.25 Combining the area law and the Second Law leads to a surprising conclusion:
black holes have the highest entropy density of any object in the universe. They are the best
hard drives around!26

1. To get a sense of scale, calculate how many gigabytes of entropy can be stored in a black
hole the size of a proton, radius ∼ 10−15 m. Note that

1 GB = 109 B = 8× 109 bits.
25The entropy of a black hole is the number of bits needed to describe all the things that could have fallen in.

The entropy of an ordinary object, like a box of gas, is the number of bits needed to describe all the different
microscopic configurations which are indistinguishable to a macroscopic experimentalist, i.e. which look like the
same box of gas. The function of entropy, in both cases, is to count the number of configurations which look the
same!

26At least when it comes to information storage density. Extracting information is much harder!
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Compare this to the total data storage on all the computers in the world, which is ap-
proximately 1.5× 1012 GB.

2. Consider a sphere of ordinary matter of surface area A. Suppose this sphere has more
entropy than a black hole,

S′ > SBH =
A

A0
.

Argue that this violates the Second Law. You may assume that as soon as a system of
area A reaches the mass MA of the corresponding black hole, it immediately collapses
to form said black hole. Hint. How could you force it to collapse?

3. Calculate the optimal information density in a spherical hard drive of radius r.

4. Suppose that the speed at which operations can be performed in a hard drive is pro-
portional to the density of information storage. (This is reasonable, since data which
is spread out takes more time to bring together for computations.) Explain why huge
(spherical) computers are necessarily slow.

Solution

1. We calculate the entropy from the area law, and convert the answer from bits to GB,
then to multiples of the world’s total storage:

S =
A

A0
bits

≈ 4π(10−15)2 m2

10−69 m2
bits

≈ 1.25× 1040 bits

≈ 1.25× 1040

8× 109
GB

≈ 1.6× 1030 GB ≈ 1018 global computer storage.

A proton-sized black hole contains more information than all the world’s computers, by
an unimaginably large factor ∼ 1018. That’s roughly the number of grains of sand in the
world! Perhaps GoogleX is working on black hole hard drives as we speak.

2. First, note that the mass of the sphere M must be smaller than the mass of the corre-
sponding black hole MA, otherwise it would have already collapsed! We can therefore
add a spherical shell of matter, mass MA−M , and compress it to ensure the surface area
is A. By assumption, this spherical object will immediately collapse to form a new black
hole. Schematically, we are performing the following “sum”:

+ =A A
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The shell of matter has its own entropy S′′, so the total entropy of system before collapse
is larger than the black hole entropy:

S′ + S′′ > S′ > SBH.

However, after the collapse, the entropy is just the black hole entropy SBH. So we seem
to have reduced the total entropy! This violates the Second Law of Thermodynamics.
Our assumption, that S′ > SBH, must have been incorrect. We learn that black holes are
the best spherical hard drives in existence!

3. Black holes have maximum entropy density. Using the area law, the entropy density of a
black hole of radius r is

S

V
=

4πr2

A04πr3/3
=

3

A0r
.

4. The previous result shows that, as a spherical hard drive gets large, the maximum in-
formation density gets very low. Since this is a maximum, density and hence processing
speed is low in any large hard drive.
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5 Particle physics

5.1 Evil subatomic twins

In 1928, Paul Dirac made a startling prediction: the electron has an evil twin, the anti-electron
or positron. The positron is the same as the electron in every way except that it has positive
charge q = +e, rather than negative charge q = −e. In fact, every fundamental particle has an
evil, charge-flipped twin; the evil twins are collectively called antimatter.27

Figure 14: The mysterious trail in Carl Anderson’s cloud chamber.

Experimentalist Carl Anderson was able to verify Dirac’s prediction using a cloud chamber,28

a vessel filled with alcohol vapour which is visibly ionised when charged particles (usually
arriving from space) pass through it. In August 1932, Anderson observed the mysterious track
shown above. Your job is to work out what left it!

1. A magnetic field B = 1.7 T points into the page in the image above. Suppose that a
particle of charge q and mass m moves in the plane of the picture with velocity v. Show
that it will move in a circle of radius R = mv/Bq, and relate the sign of the charge to the
motion.

2. The thick line in the middle of the photograph is a lead plate, and particles colliding with
it will slow down. Using this fact, along with part (1), explain why the track in the image
above must be due to a positively charged particle.

3. The width of the ionisation trail depends on what type of particle is travelling through the
chamber and how fast it goes. The amount of ionisation in the picture above is consistent
with an electron, but also an energetic proton, with momentum

pp ∼ 10−16 kg ·m
s

.

27You may think it is a unfair to call antimatter “evil”, but if you met your antimatter twin, hugging them would
be extremely deadly! You would annihilate each other, releasing the same amount of energy as a large nuclear
bomb.

28Cloud chambers are the modest ancestor of particle physics juggernauts like the Large Hadron Collider (LHC).
Unlike the LHC, you can build a cloud chamber in your backyard!
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Can you rule the proton out?

Solution

1. The Lorentz force law tells us that the particle is subject to a constant force of magnitude
F = Bqv > 0. The force will be normal to the direction of motion, acting centripetally
and causing the particle to move in a circle. To find the radius, we use a = v2/R:

a =
F

m
=
Bqv

m
=
v2

R
=⇒ R =

mv

Bq
.

Finally, by the right-hand rule, a positively charged particle will experience a force to its
left, causing it to move around the circle anticlockwise (seen from above); similarly, a
negatively charged particle will move clockwise.

2. From the previous question, the particle’s radius of curvature will get smaller as it slows
down. This tells us the particle in the image is moving from bottom to top. (Being able to
tell which the particle is going is why Anderson added the plate!) Since its path curves
in the anticlockwise sense, it must be positively charged.

3. The radius of the track is comparable to the radius of the chamber, r ≈ 0.1 m. This leads
to momentum

p = mv = BqR = 1.7× 0.1× (1.6× 10−19)
kg ·m

s
∼ 10−20 kg ·m

s
.

This is considerably smaller than the momentum a proton would need to create the trail
seen in the photograph. This only leaves one option: it is the positron, the positively
charged evil twin of the electron!
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5.2 Quantum strings and vacuums

Suppose we stretch a string of length L between two fixed points. The string can oscillate
sinusoidally in harmonics, the first few of which are sketched on the left below. Remarkably,
by considering that harmonics of space itself, we can show that empty vacuum likes to push
metal plates together!

n=3

n=1

n=2
Favg

E

L L

Figure 15: Left. Harmonics of a classical string. Right. Casimir effect on plates in a vacuum.

1. Show that harmonics on the string have wavelength

λn =
2L

n
, n = 1, 2, 3, . . . .

2. A classical string can vibrate with some combination of harmonics, including no harmon-
ics when the string is at rest. In this case, the string has no energy. A quantum string
is a little different: even if a harmonic is not active, there is an associated zero-point
energy:

E0n =
α

λn
,

where α is a constant of proportionality. This is related to Heisenberg’s uncertainty
principle, which states that we cannot know both the position and momentum of the
string with absolute certainty. Let’s calculate the zero-point energy of a quantum string.

Sum up the zero-point energies for each harmonic to find the energy of an unexcited
quantum string. Use the infamous result29 that

1 + 2 + 3 + 4 + · · · = − 1

12
.

3. Classical strings can be found everywhere, but where do we find quantum strings? One
answer is space itself. Instead of stretching a string between anchors, set two lead
plates a distance L apart. (Pretend that it vibrates in a plane, as in the picture above.)
The harmonics are no longer wobbling modes of the string, but electromagnetic waves.
Outside the plates is empty space, stretching away infinitely; it has zero energy.30

29 There are various ways of showing this, but the basic idea is that very large numbers in this sum correspond
to high frequencies which would break the string if we tried to excite them. So we have to throw most of these
large numbers away, i.e. subtract them from our running tally. In the process, we overcorrect and get a slightly
negative result!

30We can model the edge of space with lead plates infinitely far away. Since L→ ∞, E0
n → 0 and the energy does

indeed disappear.
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Suppose that the lead plates have thickness `. Show that the plates are pushed to-
gether, with each subject to an average force

Favg =
α

24`L
.

The remarkable fact that the vacuum can exert pressure on parallel metal plates is called
the Casimir effect. Although weak, it can be experimentally detected!

Bonus. These methods can also be applied to string theory. String theory posits that every-
thing in the universe is made out of tiny vibrating strings. Different subatomic particles, like
electrons and photons, correspond to the different ways that the string can vibrate. We will
learn that string theory requires 25 spatial dimensions!31

y
x

photon string

Figure 16: Left. Strings vibrating in different independent directions. Right. If we
zoom in on a photon, we get a string with a single excited harmonic.

When we treat the string as a quantum object, each independent direction gets independent
harmonics. Put a different way, we can split the string into D−1 independent strings wobbling
in two dimensions, labelled by i = 1, 2, . . . , D − 1. To get different fundamental particles, we
need to be able to excite harmonics. It turns out that, according to quantum theory, they have
discrete energy levels, separated by “quantum leaps” in energy:

Eimn =
α

λn
(1 + 2m) , m = 0, 1, 2, . . . .

The superscript i denotes the direction the harmonic wobbles; the subscript n refers to the
harmonic, while m refers to how excited that harmonic is. To find the total energy of the
string, we just add up the energy of each harmonic.

4. The string can vibrate in any direction perpendicular to the string. In three spatial
dimensions, there are two perpendicular directions for the string to vibrate (labelled by
x and y above). Explain why, for D spatial dimensions, the string can vibrate in D − 1

independent directions.

5. Suppose that we excite a first harmonic (n = 1) in some direction to its lowest excited
state (m = 1). A string vibrating this way looks like a photon from far away, i.e. a particle
of light. Use the fact that the photon has zero mass to deduce that D = 25.

31Since we only see three dimensions, the remaining 22 must somehow be “curled up” and hidden from view.
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Solution

1. From the picture, we see that λ is an allowed wavelength if L is a multiple of λ/2. More
precisely,

L =
nλ

2
=⇒ λn =

2L

n
.

2. The total rest energy of the quantum string is

E0 =
α

λ1
+
α

λ2
+
α

λ3
+ · · · = α

2L
(1 + 2 + 3 + · · · ) = − α

2L
· 1

12
= − α

24L
.

3. A jump in energy ∆E in energy over a distance ∆x leads to an average force

Favg = −∆E

∆x
.

In this case, the distance over which the energy drops is the thickness of the plates,
∆x = `, while the change in energy (as we move into the area between plates) is

∆E = Eplates − Evacuum = Eplates =
α

24L
,

since the energy for the electromagnetic waves between plates takes the same form as
harmonics in the stretched string. Thus, the average force on each plate is

Favg = −E
0

`
=

α

24`L
.

This is positive, hence directed towards the region between plates. This means the plates
are squeezed together!

4. If there are D directions, then one direction is parallel to the string, and the remaining
D − 1 directions are perpendicular to it. Thus, there are D − 1 independent directions
the string can wobble in.

5. There are D − 2 directions with all harmonics at rest, and one direction with its first
harmonic (the red vibration in the picture above) in its first energy level. From question
2, the unexcited directions have total rest energy

E0 = − α

24L
.

From the expression for Eimn, we see that by setting m = n = 1, we add an energy

2αm

λn
=

2α

λ1
=
α

L

to the unexcited energy of the harmonic. Thus, the total energy of the string is

E = (D − 2)E0 +
(
E0 +

α

L

)
=
α

L

(
−D − 1

24
+ 1

)
.

If the photon is massless, then m = 0, and by the most famous formula in physics,
E = mc2 = 0. This implies that

−D − 1

24
+ 1 = 0 =⇒ D = 25.

If string theory is correct, and photons have no mass, then the universe has 25 dimen-
sions!

46


	Motion
	Gone fishin'
	Snowballing
	Evel Knievel and the crocodile pit

	Dimensional analysis and Fermi problems
	Tsunamis and shallow water
	Turbulence in a tea cup
	A Fermi free-for-all

	Gravity
	Getting a lift into space
	Hubble's law and dark energy
	Gravitational postal service
	Donuts and wobbly orbits

	Black holes
	Colliding black holes and LIGO
	Einstein rings
	Black hole hard drives

	Particle physics
	Evil subatomic twins
	Quantum strings and vacuums


