UBC Virtual Physics Circle A Hacker's Guide to Brownian motion

David Wakeham

June 25, 2020

Overview

Our last topic in the hacker's guide is Brownian motion. It's the other reason Einstein got a Nobel prize!

We start with some review, then we do some thermodynamics. Add it all up to get Brownian motion!

Review

Review: Stokes' law

- First, we need to remind ourselves of a result from the lecture on dimensional analysis.
- ► A sphere of radius *R* moves at (slow) speed *v* through a fluid of viscosity η . (Units: $[\eta] = M/LT$.)

Stokes' law states that the drag force is

$$F_{\rm drag} = 6\pi\eta v R.$$

Review: random walks and collisions

- Last lecture, we introduced random walks and collisions.
- Walks: A random walk of N steps with length ℓ wanders

$$d \sim \sqrt{N}\ell$$
.

• Collisions: If you have cross-section σ , and collide with stuff of density *n* (number per unit volume), your mean free path λ between collisions is

Speed and diffusion

- There is another useful piece of terminology.
- In some time t, suppose a walk spreads a distance d. The diffusion constant D is defined by

$$d = \sqrt{Dt}.$$

Assume the walker moves at speed v. Each step takes time τ = ℓ/v, and N steps take time t = Nτ.Then

$$D = \frac{d^2}{t} = \frac{(\sqrt{N}\ell)^2}{t} = \frac{N\ell^2}{t} = \frac{\ell^2}{\tau} = \nu\ell.$$

• So the diffusion constant $D = v\ell$.

Exercise 1: dodgem cars

• Dodgem cars travel on average 1 m/s, with $\sigma \sim 2$ m.

- You and 4 of friends are colliding randomly on a square arena 5 m in width.
- 1. What is the mean free path λ ?
 - 2. Roughly how long does it take to bounce from the center to the edge of the arena? Use $t = d^2/D = d^2/\ell v$.

Exercise 1: dodgem cars (solution)

► There are 5 cars in a 25 m² area, so $n = 0.2 \text{ m}^{-2}$. The cross-section is $\sigma = 2 \text{ m}$, and hence the mfp is

$$\lambda = \frac{1}{\sigma n} = \frac{1}{2 \times 0.2} \text{ m} = 2.5 \text{ m}.$$

Using the hint,

$$t = \frac{d^2}{\ell v} = \frac{25}{2.5 \times 1}$$
 s = 10 s.

In reality, you're trying to hit each other. So this is a good model only if, e.g. you fall asleep!

Review: ideal gas law

- To connect to atomic motion, we need to learn about the ideal gas law. (This may be review for many of you.)
- Imagine a balloon \mathcal{N} gas particles.

► The gas is hot (temperature T), takes up space (volume V), and presses on the balloon (pressure P).

Derivation of ideal gas law

The ideal gas law states that these properties are related:

$$PV = k_B \mathcal{NT}.$$

- Here, $k_B = 1.38 \times 10^{-23} \text{ J/K}$ is Boltzmann's constant.
- We can "derive" this from dimensional analysis! But we need more than MLT (mass, length, time).
- ▶ In addition to length *L* and time *T*, use the following:
 - 1. energy \mathcal{E} (instead of M);
 - 2. temperature Θ ;
 - 3. and particle number Ξ .
- ▶ Ξ is for stuff growing with particle number, e.g. $[N] = \Xi$.

(a) Show that P and V have dimension

$$[V] = \Xi L^3, \quad [P] = \frac{\mathcal{E}}{L^3}.$$

(b) From $k_B = 1.38 \times 10^{-23}$ J/K, deduce $[k_B] = \mathcal{E}/\Theta$. (c) Conclude that

$$[PV] = [\mathcal{N}k_B\mathcal{T}] = \Xi\mathcal{E}.$$

▶ With more care, you can show PV = Nk_BT is the only dimensionally consistent relation between all these things.

Exercise 2: ideal gas (solution)

(a) Usually, V has units $[V] = L^3$. But the volume of a gas grows with particle number, so $[V] = \Xi L^3$.

• As for pressure, using work (Fd = W)

$$P = \frac{F}{A} = \frac{W}{Ad} \implies [P] = \frac{[W]}{[Ad]} = \frac{\mathcal{E}}{L^3}.$$

(b) We have

$$[k_B = 1.38 \times 10^{-23} \text{ J/K}] = [\text{J}]/[\text{K}] = \mathcal{E}/\Theta.$$

(c) From part (a), $[PV] = (\Xi L^3)(\mathcal{E}/L^3) = \Xi \mathcal{E}$. From part (b), $[k_B \mathcal{N} \mathcal{T}] = (\mathcal{E}/\Theta)[\mathcal{N}][\mathcal{T}] = \Xi \mathcal{E}$.

Brownian motion

Lucretius, Brown, Einstein

- A little history! In 60 BC, Roman philosopher Lucretius observed the zigzag motion of dust motes. He correctly attributed it to collisions with tiny invisible particles.
- In 1827, botanist Robert Brown saw pollen jiggle under a microscope. Unlike Lucretius, he couldn't explain it!
- Most 19th century scientists were skeptical of atoms.
- In 1905, a 26-year old Swiss patent clerk finished a PhD on Brownian motion, expanding on Lucretius' idea to account for the jiggling grains. That clerk: Einstein!

The pollen polka

- We will reproduce one of the main results of Einstein's PhD thesis using cheap guesswork, i.e. hacking.
- Pour a viscous fluid into a container, then plonk a few spherical pollen grains into it, as below:

The pollen (pink) will start jiggling around as it collides with fluid molecules (green), executing a random walk.

Brownian motion: mean free path

- Let's put it all together to see how far the pollen jitters. This is measured by the diffusion coefficient $D = \lambda v$.
- First, λ ! The pollen is much larger than the molecules. If it has radius *R*, it has cross-section $\sigma = \pi R^2$.

► Assume the fluid obeys the ideal gas law, $PV = k_B \mathcal{NT}$. Since density $n = \mathcal{N}/V$, the mfp λ is

$$\lambda = \frac{1}{n\sigma} = \frac{V}{N\pi R^2} = \frac{V}{N\pi R^2} \times \frac{k_B NT}{PV} = \frac{k_B T}{\pi P R^2}.$$

Brownian motion: terminal velocity

- What about the speed v? A reasonable guess is terminal velocity, achieved when weight balances drag force.
- From Stokes' law, if the fluid has viscosity η ,

$$mg = 6\pi\eta v_{\text{term}}R \implies v_{\text{term}} = \frac{mg}{6\pi\eta R}.$$

$$F_{\text{drag}} = 6\pi\eta vR$$

$$W = mg$$

Combining with our expression for λ, we get

$$D = \lambda v_{\text{term}} = \frac{k_B T}{\pi P R^2} \cdot \frac{mg}{6\pi \eta R}$$

Brownian motion: magic trick!

A magic trick: suppose the pollen settles at a height where pressure balances weight, or mg = PA = πPR².

Plugging this into D gives the Stokes-Einstein relation:

$$D = \frac{k_B T}{\pi P R^2} \cdot \frac{mg}{6\pi \eta R} = \frac{k_B T}{mg} \cdot \frac{mg}{6\pi \eta R} = \frac{k_B T}{6\pi \eta R},$$

one of the main results of Einstein's PhD thesis!

Brownian motion: comments

► Thus, a pollen grain wanders a distance *d* in time *t*,

$$d \sim \sqrt{Dt}, \quad D = rac{k_B \mathcal{T}}{6 \pi \eta R}.$$

In 1908, Jean Perrin experimentally confirmed Einstein's predictions, hence the existence of atoms. Another Nobel!

Grains don't settle at a fixed height, but exist in "dynamic equilibrium". We used a cheeky hacker shortcut!

Exercise 3: Avogadro's constant I

You may have seen the chem version of the ideal gas law:

$$PV = \mathcal{N}_{mol}\mathcal{RT},$$

where $\mathcal{R} = 8.3 \text{ J/K}$ mol is the ideal gas constant.

- (a) Recall that one mol is N_A particles, where N_A is Avogadro's constant. Show that $N_A = \mathcal{R}/k_B$.
- (b) In 1905, \mathcal{R} was known but N_A was not. Argue that

$$N_A \sim rac{t}{d^2} \cdot rac{\mathcal{RT}}{6\pi\eta R}.$$

This was one of no fewer than five methods Einstein proposed for measuring Avogadro's constant!

Exercise 3: Avogadro's constant I (solution)

(a) We equate the physics and chem version to get:

$$\begin{aligned} \mathcal{N} k_B \mathcal{T} &= \mathcal{P} V = \mathcal{N}_{\mathsf{mol}} \mathcal{R} \mathcal{T} \\ \Longrightarrow & \mathcal{N} k_B = \mathcal{N}_{\mathsf{mol}} \mathcal{R}. \end{aligned}$$

Since $\mathcal{N}_{mol}\mathcal{N}_{A}=\mathcal{N}$, we find

$$N_A k_B = \mathcal{R}.$$

(b) From the Stokes-Einstein relation,

$$rac{k_B T}{6 \pi \eta R} \sim rac{d^2}{t} \implies N_A \sim rac{t}{d^2} \cdot rac{\mathcal{R} T}{6 \pi \eta R}.$$

Exercise 3: Avogadro's constant II

• Below, we show some of Perrin's data ($R = 0.5 \,\mu m$):

Observations are made every 30 s, and lines ruled every 3 μm. The water had T = 290 K and η = 0.011 kg/m s.
 (c) Using this data, find N_A.

Exercise 3: Avogadro's constant II (solution)

- (c) We have 20 points, spread over 5 divisions or so. Thus, $t = 30 \times 20$ s, and $d \sim 5 \times 3 \,\mu$ m.
 - ▶ We have T = 290 K, $R = 0.5 \mu$ m, $\eta = 0.0011$ kg/m s. Plugging into (b) and using SI units everywhere,

$$egin{aligned} & \mathcal{N}_{\mathcal{A}} \sim rac{t}{d^2} \cdot rac{\mathcal{R}\mathcal{T}}{6\pi\eta R} \ &= rac{30 imes 20}{(5 imes 3 imes 10^{-6})^2} rac{8.3 \cdot 290}{6\pi \cdot 0.0011 \cdot (0.5 imes 10^{-6})} \ &pprox 6.2 imes 10^{23}. \end{aligned}$$

The modern value is $N_A = 6.022 \times 10^{23}$. Sweet!

Exercise 3: Avogadro's constant III

► Of course, the conventional definition of N_A is the number of carbon atoms in 12 g of carbon-12.

(d) From $N_A \approx 6 \times 10^{23}$, estimate a carbon-12 atom's mass.

 Most of the atom's mass is concentrated in its nucleus, made of (roughly) equally weighted protons and neutrons.

(e) What is the approximate mass of a nucleon?

Exercise 3: Avogadro's constant III (solution)

(d) The atom mass $m_{\rm C}$ is the total mass divided by N_A :

$$m_{\rm C} = rac{12 \ {
m g}}{N_A} pprox 2 imes 10^{-23} \ {
m g} = 2 imes 10^{-26} \ {
m kg}.$$

(e) We have $m_{\rm C} \approx 12 m_{\rm nucleon}$, and hence:

$$m_{
m nucleon} pprox rac{m_{
m C}}{12} pprox 1.7 imes 10^{-27} \
m kg$$

Questions?

Thanks everyone, you've been grand. Go forth and hack physics!

