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Overview

» Our last topic in the hacker's guide is Brownian motion.
It's the other reason Einstein got a Nobel prize!

» We start with some review, then we do some
thermodynamics. Add it all up to get Brownian motion!






Review: Stokes' law

» First, we need to remind ourselves of a result from the
lecture on dimensional analysis.

» A sphere of radius R moves at (slow) speed v through a
fluid of viscosity 7. (Units: [n] = M/LT.)

o

» Stokes' law states that the drag force is

Farag = 6mVR.



Review: random walks and collisions

» Last lecture, we introduced random walks and collisions.

» Walks: A random walk of N steps with length ¢ wanders

d ~ V'NC.

» Collisions: If you have cross-section o, and collide with
stuff of density n (number per unit volume), your mean
free path A\ between collisions is




Speed and diffusion

v

There is another useful piece of terminology.

v

In some time t, suppose a walk spreads a distance d.
The diffusion constant D is defined by

d =+vDt.

Assume the walker moves at speed v. Each step takes
time 7 = ¢/v, and N steps take time t = N7.Then

v

2 2 2 2
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So the diffusion constant D = v/.

v



Exercise 1: dodgem cars

» Dodgem cars travel on average 1 m/s, with 0 ~ 2 m.

1 m 2m

» You and 4 of friends are colliding randomly on a square
arena 5 m in width.

» 1. What is the mean free path \?

2. Roughly how long does it take to bounce from the center
to the edge of the arena? Use t = d?/D = d?//v.



Exercise 1: dodgem cars (solution)

» There are 5 cars in a 25 m? area, so n = 0.2 m~2.
The cross-section is ¢ = 2 m, and hence the mfp is

1 1
on " 2x02mTAem
» Using the hint,
e 25
P ~10s.
v 25x1° >

» In reality, you're trying to hit each other. So this is a

good model only if, e.g. you fall asleep!



Review: ideal gas law

» To connect to atomic motion, we need to learn about the
ideal gas law. (This may be review for many of you.)

» Imagine a balloon A\ gas particles.

T

» The gas is hot (temperature 7'), takes up space (volume
V/), and presses on the balloon (pressure P).



Derivation of ideal gas law

v

The ideal gas law states that these properties are related:

PV = kgNT.

v

Here, kg = 1.38 x 107 J/K is Boltzmann's constant.

v

We can ‘“derive” this from dimensional analysis! But we
need more than MLT (mass, length, time).

v

In addition to length L and time T, use the following:

1. energy & (instead of M);
2. temperature ©;
3. and particle number =.

v

= is for stuff growing with particle number, e.g. [N] = =.



Exercise 2: ideal gas

(a) Show that P and V have dimension

[V]==L° [P]= %

(b) From kg = 1.38 x 1072 J/K, deduce [kg] = £/O.
(c) Conclude that
[PV] =[NksT] = ZE£.

» With more care, you can show PV = NkgT is the only
dimensionally consistent relation between all these things.



Exercise 2: ideal gas (solution)

(a) Usually, V has units [V] = L3. But the volume of a gas
grows with particle number, so [V] = =L3.

» As for pressure, using work (Fd = W)

F W _[W]_S
i~a — Pl=pg=o

(b) We have
[ke = 1.38 x 1072 J/K] = [J]/[K] = £/6.

(c) From part (a), [PV] = (ZL3)(E/L3) = =€.
From part (b), [keN'T] = (£/©)[N][T] = =Z€.






Lucretius, Brown, Einstein

v

A little history! In 60 BC, Roman philosopher Lucretius
observed the zigzag motion of dust motes. He correctly
attributed it to collisions with tiny invisible particles.

In 1827, botanist Robert Brown saw pollen jiggle under a
microscope. Unlike Lucretius, he couldn't explain it!

Most 19th century scientists were skeptical of atoms.

In 1905, a 26-year old Swiss patent clerk finished a PhD
on Brownian motion, expanding on Lucretius' idea to
account for the jiggling grains. That clerk: Einstein!



The pollen polka

» We will reproduce one of the main results of Einstein's
PhD thesis using cheap guesswork, i.e. hacking.

» Pour a viscous fluid into a container, then plonk a few
spherical pollen grains into it, as below:

» The pollen (pink) will start jiggling around as it collides
with fluid molecules (green), executing a random walk.



Brownian motion: mean free path

» Let's put it all together to see how far the pollen jitters.
This is measured by the diffusion coefficient D = Av.

» First, A\l The pollen is much larger than the molecules. If
it has radius R, it has cross-section o = 7TR?.

» Assume the fluid obeys the ideal gas law, PV = kgN'T.
Since density n = N/ V/, the mfp X is

1 vV XkBNT_kBT
noc  N7R2 N7R2 PV  ©PR2?

\ =



Brownian motion: terminal velocity

» What about the speed v? A reasonable guess is terminal
velocity, achieved when weight balances drag force.

» From Stokes’ law, if the fluid has viscosity 7,

mg
6mnR’

mg = 67777VtermR — Vierm =

Farag = OTINVR
W= mg

» Combining with our expression for )\, we get

kBT~ mg
7PR?2 6mnR

D= )\Vterm =



Brownian motion: magic trick!

» A magic trick: suppose the pollen settles at a height
where pressure balances weight, or mg = PA = 7PR?.

» Plugging this into D gives the Stokes-Einstein relation:

D— kBT mg _kBT. mg kBT
- 7PR?2 6mnR  mg 6mR  6mnR’

one of the main results of Einstein's PhD thesis!



Brownian motion: comments

» Thus, a pollen grain wanders a distance d in time t,

keT
d~vVvDt, D= .
’ 6mnR

» In 1908, Jean Perrin experimentally confirmed Einstein's
predictions, hence the existence of atoms. Another Nobel!

» Grains don't settle at a fixed height, but exist in “dynamic
equilibrium”. We used a cheeky hacker shortcut!



Exercise 3: Avogadro's constant |

» You may have seen the chem version of the ideal gas law:
PV = NuoRT,

where R = 8.3 J/K mol is the ideal gas constant.

(a) Recall that one mol is N4 particles, where Ny is
Avogadro's constant. Show that Ny = R /kg.

(b) In 1905, R was known but N4 was not. Argue that

t RT

Np~ — - :
AT 2 6mR

This was one of no fewer than five methods Einstein
proposed for measuring Avogadro’s constant!



Exercise 3: Avogadro's constant | (solution)

(a) We equate the physics and chem version to get:

NkgT = PV = NpoRT
— NkB = Nmo|R.

Since NpotNa = N, we find
Naksg = R.
(b) From the Stokes-Einstein relation,

keT d_2 Y t RT
6mnR ¢ AT 42 6mR




Exercise 3: Avogadro’s constant I

» Below, we show some of Perrin's data (R = 0.5 um):

ah ANCER
\ e
5 =
X <:7r
A
\\‘\

» Observations are made every 30 s, and lines ruled every
3 um. The water had 7 =290 K and n = 0.011 kg/m s.

(c) Using this data, find Na.



Exercise 3: Avogadro's constant Il (solution)

(c) We have 20 points, spread over 5 divisions or so.
Thus, t =30 x20s, and d ~ 5 x 3 um.
» We have T =290 K, R =05 m, n =0.0011 kg/m s.
Plugging into (b) and using SI units everywhere,

t RT
Na~ g2 67nR
3020 8.3-290
~ (5x3x1076)267-0.0011 - (0.5 x 10-9)
~ 6.2 x 10%.

The modern value is Ny = 6.022 x 10%3. Sweet!



Exercise 3: Avogadro’s constant Ill

» Of course, the conventional definition of N, is the
number of carbon atoms in 12 g of carbon-12.

(d) From N4 ~ 6 x 10?3, estimate a carbon-12 atom’s mass.

» Most of the atom’s mass is concentrated in its nucleus,
made of (roughly) equally weighted protons and neutrons.

(e) What is the approximate mass of a nucleon?



Exercise 3: Avogadro's constant Il (solution)

(d) The atom mass mc is the total mass divided by Nj:

mczﬁxzx 1072 g =2 x 107% kg.
Na

(e) We have mc =~ 12mpygeon, and hence:

mc _97
— ~1. 1 kg.
B 7 x 10 g

o
Mhyucleon =~



Questions?

Thanks everyone, you've been grand.

Go forth and hack physics!
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