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Overview

I Our last topic in the hacker’s guide is Brownian motion.
It’s the other reason Einstein got a Nobel prize!

I We start with some review, then we do some
thermodynamics. Add it all up to get Brownian motion!



Review



Review: Stokes’ law

I First, we need to remind ourselves of a result from the
lecture on dimensional analysis.

I A sphere of radius R moves at (slow) speed v through a
fluid of viscosity η. (Units: [η] = M/LT .)

I Stokes’ law states that the drag force is

Fdrag = 6πηvR .



Review: random walks and collisions

I Last lecture, we introduced random walks and collisions.

I Walks: A random walk of N steps with length ` wanders

d ∼
√
N`.

I Collisions: If you have cross-section σ, and collide with
stuff of density n (number per unit volume), your mean
free path λ between collisions is



Speed and diffusion

I There is another useful piece of terminology.

I In some time t, suppose a walk spreads a distance d .
The diffusion constant D is defined by

d =
√
Dt.

I Assume the walker moves at speed v . Each step takes
time τ = `/v , and N steps take time t = Nτ .Then

D =
d2

t
=

(
√
N`)2

t
=

N`2

t
=
`2

τ
= v`.

I So the diffusion constant D = v`.



Exercise 1: dodgem cars

I Dodgem cars travel on average 1 m/s, with σ ∼ 2 m.

I You and 4 of friends are colliding randomly on a square
arena 5 m in width.

I 1. What is the mean free path λ?
2. Roughly how long does it take to bounce from the center

to the edge of the arena? Use t = d2/D = d2/`v .



Exercise 1: dodgem cars (solution)

I There are 5 cars in a 25 m2 area, so n = 0.2 m−2.
The cross-section is σ = 2 m, and hence the mfp is

λ =
1

σn
=

1

2× 0.2
m = 2.5 m.

I Using the hint,

t =
d2

`v
=

25

2.5× 1
s = 10 s.

I In reality, you’re trying to hit each other. So this is a
good model only if, e.g. you fall asleep!



Review: ideal gas law

I To connect to atomic motion, we need to learn about the
ideal gas law. (This may be review for many of you.)

I Imagine a balloon N gas particles.

I The gas is hot (temperature T ), takes up space (volume
V ), and presses on the balloon (pressure P).



Derivation of ideal gas law

I The ideal gas law states that these properties are related:

PV = kBNT .

I Here, kB = 1.38× 10−23 J/K is Boltzmann’s constant.

I We can “derive” this from dimensional analysis! But we
need more than MLT (mass, length, time).

I In addition to length L and time T , use the following:

1. energy E (instead of M);
2. temperature Θ;
3. and particle number Ξ.

I Ξ is for stuff growing with particle number, e.g. [N ] = Ξ.



Exercise 2: ideal gas

(a) Show that P and V have dimension

[V ] = ΞL3, [P] =
E
L3
.

(b) From kB = 1.38× 10−23 J/K, deduce [kB ] = E/Θ.

(c) Conclude that

[PV ] = [N kBT ] = ΞE .

I With more care, you can show PV = N kBT is the only
dimensionally consistent relation between all these things.



Exercise 2: ideal gas (solution)

(a) Usually, V has units [V ] = L3. But the volume of a gas
grows with particle number, so [V ] = ΞL3.

I As for pressure, using work (Fd = W )

P =
F

A
=

W

Ad
=⇒ [P] =

[W ]

[Ad ]
=
E
L3
.

(b) We have

[kB = 1.38× 10−23 J/K] = [J]/[K] = E/Θ.

(c) From part (a), [PV ] = (ΞL3)(E/L3) = ΞE .
From part (b), [kBNT ] = (E/Θ)[N ][T ] = ΞE .



Brownian motion



Lucretius, Brown, Einstein

I A little history! In 60 BC, Roman philosopher Lucretius
observed the zigzag motion of dust motes. He correctly
attributed it to collisions with tiny invisible particles.

I In 1827, botanist Robert Brown saw pollen jiggle under a
microscope. Unlike Lucretius, he couldn’t explain it!

I Most 19th century scientists were skeptical of atoms.

I In 1905, a 26-year old Swiss patent clerk finished a PhD
on Brownian motion, expanding on Lucretius’ idea to
account for the jiggling grains. That clerk: Einstein!



The pollen polka

I We will reproduce one of the main results of Einstein’s
PhD thesis using cheap guesswork, i.e. hacking.

I Pour a viscous fluid into a container, then plonk a few
spherical pollen grains into it, as below:

I The pollen (pink) will start jiggling around as it collides
with fluid molecules (green), executing a random walk.



Brownian motion: mean free path

I Let’s put it all together to see how far the pollen jitters.
This is measured by the diffusion coefficient D = λv .

I First, λ! The pollen is much larger than the molecules. If
it has radius R , it has cross-section σ = πR2.

I Assume the fluid obeys the ideal gas law, PV = kBNT .
Since density n = N /V , the mfp λ is

λ =
1

nσ
=

V

NπR2
=

V

NπR2
× kBNT

PV
=

kBT
πPR2

.



Brownian motion: terminal velocity

I What about the speed v? A reasonable guess is terminal
velocity, achieved when weight balances drag force.

I From Stokes’ law, if the fluid has viscosity η,

mg = 6πηvtermR =⇒ vterm =
mg

6πηR
.

I Combining with our expression for λ, we get

D = λvterm =
kBT
πPR2

· mg

6πηR
.



Brownian motion: magic trick!

I A magic trick: suppose the pollen settles at a height
where pressure balances weight, or mg = PA = πPR2.

I Plugging this into D gives the Stokes-Einstein relation:

D =
kBT
πPR2

· mg

6πηR
=

kBT
mg
· mg

6πηR
=

kBT
6πηR

,

one of the main results of Einstein’s PhD thesis!



Brownian motion: comments

I Thus, a pollen grain wanders a distance d in time t,

d ∼
√
Dt, D =

kBT
6πηR

.

I In 1908, Jean Perrin experimentally confirmed Einstein’s
predictions, hence the existence of atoms. Another Nobel!

I Grains don’t settle at a fixed height, but exist in “dynamic
equilibrium”. We used a cheeky hacker shortcut!



Exercise 3: Avogadro’s constant I

I You may have seen the chem version of the ideal gas law:

PV = NmolRT ,

where R = 8.3 J/K mol is the ideal gas constant.

(a) Recall that one mol is NA particles, where NA is
Avogadro’s constant. Show that NA = R/kB .

(b) In 1905, R was known but NA was not. Argue that

NA ∼
t

d2
· RT

6πηR
.

This was one of no fewer than five methods Einstein
proposed for measuring Avogadro’s constant!



Exercise 3: Avogadro’s constant I (solution)

(a) We equate the physics and chem version to get:

N kBT = PV = NmolRT
=⇒ N kB = NmolR.

Since NmolNA = N , we find

NAkB = R.

(b) From the Stokes-Einstein relation,

kBT
6πηR

∼ d2

t
=⇒ NA ∼

t

d2
· RT

6πηR
.



Exercise 3: Avogadro’s constant II

I Below, we show some of Perrin’s data (R = 0.5µm):

I Observations are made every 30 s, and lines ruled every
3µm. The water had T = 290 K and η = 0.011 kg/m s.

(c) Using this data, find NA.



Exercise 3: Avogadro’s constant II (solution)

(c) We have 20 points, spread over 5 divisions or so.
Thus, t = 30× 20 s, and d ∼ 5× 3µm.

I We have T = 290 K, R = 0.5µ m, η = 0.0011 kg/m s.
Plugging into (b) and using SI units everywhere,

NA ∼
t

d2
· RT

6πηR

=
30× 20

(5× 3× 10−6)2
8.3 · 290

6π · 0.0011 · (0.5× 10−6)

≈ 6.2× 1023.

The modern value is NA = 6.022× 1023. Sweet!



Exercise 3: Avogadro’s constant III

I Of course, the conventional definition of NA is the
number of carbon atoms in 12 g of carbon-12.

(d) From NA ≈ 6× 1023, estimate a carbon-12 atom’s mass.

I Most of the atom’s mass is concentrated in its nucleus,
made of (roughly) equally weighted protons and neutrons.

(e) What is the approximate mass of a nucleon?



Exercise 3: Avogadro’s constant III (solution)

(d) The atom mass mC is the total mass divided by NA:

mC =
12 g

NA
≈ 2× 10−23 g = 2× 10−26 kg.

(e) We have mC ≈ 12mnucleon, and hence:

mnucleon ≈
mC

12
≈ 1.7× 10−27 kg.



Questions?

Thanks everyone, you’ve been grand.

Go forth and hack physics!
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