
I. Bell and Boris’ Bogus Journey

From the pale green of burnt tellurium to the conductivity of copper, quantum mechanics seems
necessary to explain the world. But quantum mechanics is also famously weird. As Richard
Feynman said,

If you think you understand quantum mechanics, you don’t understand quantum me-
chanics.

Sometimes, a physicist is so squeamish they reject it altogether. Albert Einstein, one of the founders
of quantum theory but later its most famous critic, stated

God does not play dice.

In their classic 1935 paper, Einstein, Podolsky and Rosen (EPR) found a way to make the world
look quantum-mechanical without a dice-playing God. According to EPR, God runs a clockwork
universe, but conceals its workings from the poor schmucks at the other end of oscilloscope. Since
these clockwork theories replace fundamental randomness with hidden classical variables obeying
a locality condition, they are called local hidden variable theories.

At face value, it seems impossible to distinguish quantum mechanics from its clockwork twin.
But like twins, they are easier to tell apart when they stand side by side! In 1964, John Bell found
a brilliant way to check if Nature runs on clockwork or dice by directly comparing their predictions.
The goal of this tutorial will be to explain the math behind Bell’s result, and then perform the
corresponding experiment on a quantum computer. We can compare twins, and discover if nature
is classical or quantum!

Bounding with Bell
Bell’s method involves nothing more sophisticated than flipping coins. For simplicity, we will focus
on the two-coin example due to Clauser, Horne, Shimony, and Holt (CHSH). Imagine that Alice and
Bob are two grad students, hired by Eve to perform the menial chore of flipping coins. Instead of
just observing whether the coins are tails or heads, Alice and Bob have two different measurements
they can choose from. Since we are trying to “mock up” quantum mechanics, we will use quantum-
mechanical notation for states and operators, and explain how to restrict to local hidden variable
theories below.

Label Alice’s two available measurements by A0, A1, Bob’s measurements by B0, B1, and assume
that all measurements have outcomes ±1. For instance, A0 might measure if the flipped coin is heads
(+1) or tails (−1), while A1 measures if the tail points in a more northerly (+1) or southerly (−1)
direction. Although Eve can fiddle with the coins beforehand, once the experiment starts, Alice
and Bob cannot influence each others measurements. This means Alice and Bob’s measurements
commute, which we can write succinctly as

[Ai, Bj] = AiBj −BjAi = 0. (1)
Since any operator has outcomes ±1, the outcome of applying any operator twice is the identity:

A2
i = B2

j = I. (2)
You can check this assertion below.

1

http://www.drchinese.com/David/EPR.pdf
https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.23.880

Exercise 1. Show that if a Hermitian observable A has eigenvalues ±1 (with any
multiplicity), then A2 = I. Hint. Consider the eigenbasis of A.

For each run of the experiment, Alice can choose to measure A0 or A1, while Bob can choose
to measure B0 or B1. For many trials, we define the correlation

⟨AiBj⟩ := lim
Nij→∞

n+ij − n−ij
Nij

,

where n±ij is the number of times AiBj = ±1, and Nij := n+ij + n−ij is the total number of trials
where Alice chooses Ai and Bob chooses Bj .

Exercise 2. Show that, if Eve prepares a pure state |ψ⟩ for the two-coin system,
the correlation is given by

⟨AiBj⟩ = ⟨ψ|AiBj |ψ⟩. (3)

Similarly, if Eve prepares a density ρ, the correlation is

⟨AiBj⟩ = Tr[ρAiBj].

Bell realized that quantum mechanics and classical hidden variable theories make different
predictions about the correlations between Alice and Bob. To see how, define a new operator
involving both Alice and Bob’s possible measurements:

E = A0B0 +A0B1 +A1B0 −A1B1.

With a little algebra, we can find a useful expression for E2.

Exercise 3. Using A2
i = B2

j = I, show that squaring the operator E gives

E2 = 4I− [A0, A1][B0, B1]. (4)

We have, perhaps suspiciously, been using quantum-mechanical formalism to describe classical
physics. A simple observation is that classical measurements commute. In classical physics—for
instance, a local hidden variable theory—observation has no effect on the system, so Alice can
perform measurements on her system in any order she pleases, and the same goes for Bob. Thus,
[A0, A1] = [B0, B1] = 0. From (4), we have

E2 = 4I− [A0, A1][B0, B1] = 4I.

Taking expectations immediately gives the CHSH bound:

|⟨E⟩| ≤
√

⟨E2⟩ = 2. (5)

This is a bound on classical correlations between Alice and Bob. A general Bell inequality is any
such bound on classical correlations.

2

Exercise 4. To derive (5), we used the fact that for any Hermitian operator A,

|⟨A⟩| ≤
√
⟨A2⟩.

Prove this is true. Hint. Use the fact that ⟨(A− ⟨A⟩)2⟩ ≥ 0.

One of the nice features of this approach is that, by discussing operators, we have sidestepped
classical states altogether. We can even figure out how to max out the bound using operators alone.
In fact, I’ll leave it to you!

Exercise 5. Check that any deterministic assignment of outcomes to Ai, Bj
saturates the CHSH bound.

Alice and Bob don’t even need to flip their coins! When they do, they introduce classical randomness
into the experiment. In fact, Eve can even permit Alice and Bob to share randomness beforehand,
e.g. they flip a third coin and use its outcome to make decisions once the experiment starts.

If Eve only allows Alice and Bob to share classical randomness, their density matrix ρ will be
separable: there is some set of probabilities pk ≥ 0,

∑
k pk = 1, such that

ρ =
∑
k

pkρ
k
A ⊗ ρkB.

Let’s break this down. This distribution {pk} is precisely the shared classical randomness Alice
and Bob access before the experiment. If the shared random outcome is k, Alice chooses density
matrix ρkA, and Bob chooses ρkB, and then perform their separate measurements. If these separate
but jointly conditioned measurements are deterministic, then Alice and Bob will again saturate
CHSH, as you can show momentarily. In fact, this completely characterizes the set of experiments
which achieve the classical bound!

Exercise 6. Show that, if ρkA and ρkB correspond to deterministic assignments,
then Alice and Bob will achieve the CHSH bound.

You might wonder whether classical states and operators are equivalent notions. Our earlier
derivation of the CHSH bound said nothing about states, and in fact, even with an entangled state
(discuss further below) classical operators still obey CHSH. You need quantum measurements to
exploit quantum states. But if we assume a classical state, trying to maximize |⟨E⟩| inevitably leads
us back to classical operators, since quantum measurements tend to do worse, as we show now.

Exercise 7. Consider a density matrix ρ = ρA ⊗ ρB.

(a) Show that

⟨E⟩ = ⟨A0⟩⟨B0⟩+ ⟨A0⟩⟨B1⟩+ ⟨A1⟩⟨B0⟩ − ⟨A1⟩⟨B1⟩.

(b) Define the function

f(x, y, a, b) := xa+ xb+ ya− yb.

Compute ∇f . Conclude that the only local extremum is x = y = a = b = 0.

3

(c) Writing x = ⟨A0⟩, y = ⟨A1⟩, a = ⟨B0⟩, b = ⟨B1⟩, argue that to maximize
|⟨E⟩|, we must choose x, y, a, b ∈ {±1}.

(d) From part (c), conclude that for separable states, |⟨E⟩| ≤ 2, and moreover
the maximising operators are classical.

(e) Extend your results to the general separable case, ρ =
∑

k pkρ
k
A ⊗ ρkB.

When Alice and Bob only share classical randomness, quantum measurements on their individ-
ual coins will not help beat the CHSH bound. The best they can do is make classical measurements!
Thus, not only do quantum measurements need quantum states, but the converse is true, and quan-
tum states are need to exploit quantum measurements.

We have said that a classical universe runs on clockwork, while the quantum universe is ran-
dom. So where does classical randomness fit into the picture? Really, classical randomness is due
to ignorance rather than fundamental physics. When you roll (classical) dice, the outcome is com-
pletely deterministic, though sensitive to initial conditions we do not know or have control over. To
paraphrase Einstein, in a classical world, humans can play dice but an omniscient God cannot. In
quantum mechanics, randomness is a fundamental feature of the universe, and even God is obliged
to join in the game!

Tangling with Tsirelson
Bell’s inequality provides a simple way to check if Nature is classical: hire a team of grad students
to perform quantum measurements on a bunch of operators to see if (5) is obeyed. Actually, even
better than that, you can do this using a real-life quantum computer. But before we do, it’s worth
asking if are there any bounds on quantum correlations. Otherwise, our experiment might not only
prove that classical physics is wrong, but quantum mechanics as well! In 1980, Tsirelson found such
a constraint. First, we need a few technical results.

Exercise 8. The operator norm for a matrix A is just the largest eigenvalue of
A, or equivalently,

||A|| = sup
|ψ⟩

|A|ψ⟩|.

(a) From the definition, argue that ||AB|| ≤ ||A|| · ||B||.

(b) Show that ⟨A⟩ψ = ⟨ψ|A|ψ⟩ ≤ ||A|| for any state |ψ⟩. Hint. Use Cauchy-
Schwarz.

(c) Extend (b) to any density matrix ρ, i.e. Tr[ρA] ≤ ||A||.

(d) Check that ||A|| satisfies the triangle inequality, ||A+B|| ≤ ||A||+ ||B||.

Let’s apply these results to (4):

⟨E2⟩ ≤ ||E2|| = ||4I − [A0, A1][B0, B1]||
≤ 4 + ||[A0, A1]|| · ||[B0, B1]||
≤ 4 + 4||A0|| · ||A1|| · ||B0|| · ||B1|| = 8.

4

https://www.tau.ac.il/~tsirel/download/qbell80.pdf

This leads to Tsirelson’s bound on the expectation ⟨E⟩:

|⟨E⟩| ≤
√

⟨E2⟩ = 2
√
2. (7)

Anything exceeding Tsirelson’s bound is called super-quantum. Concretely, you might wonder how
to violate Bell’s inequality, and saturate Tsirelson’s bound. We can kill two bounds with one state!

Exercise 9. Suppose Eve prepares the singlet state on the two coins,

|Ψ⟩ = 1√
2
(|01⟩ − |10⟩),

while Alice and Bob choose the following operators:

A0 = −ZA +XA√
2

, A1 =
ZA −XA√

2
, B0 = XB, B1 = ZB.

Show that the resulting correlations saturate Tsirelson’s bound, and hence violate
Bell’s inequality.

Clearly, there is something special about the singlet state |Ψ⟩. In the previous section, we
showed that classical states were separable. Since we break the CHSH bound, |Ψ⟩ must not be
separable. You can directly confirm this in the next exercise.

Exercise 10. Show that |Ψ⟩ is not separable, i.e. there is no choice of {pk, ρkA, ρkB}
for which

|Ψ⟩⟨Ψ| =
∑
k

pkρ
k
A ⊗ ρkB.

The opposite of separability is entanglement. Since entanglement (non-separability) is needed to
violate Bell’s inequalities, entanglement is at the heart of quantum correlations. Ironically, although
EPR advocated for local hidden variable theories, by introducing entanglement to the world they
provided the very resources needed to show the world is truly quantum! Put another way, even
when Einstein was wrong, he was right.

References
1. On the EPR Paradox (1964), John Bell.
2. Proposed Experiment to Test Local Hidden-Variable Theories (1969), John F. Clauser,

Michael A. Horne, Abner Shimony, and Richard A. Holt.
3. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? (1935),

Albert Einsten, Boris Podolsky and Nathan Rosen.
4. Quantum Generalizations of Bell’s inequality (1980), Boris Tsirelson.

5

http://www.drchinese.com/David/EPR.pdf
https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.23.880
http://www.drchinese.com/David/EPR.pdf
https://www.tau.ac.il/~tsirel/download/qbell80.pdf

II. From Quaternions to Quantum Cryptography

Basic group theory
A symmetry is change without difference: a “boring” transformation under which an object looks
the same. A group is a doodad for keeping track of symmetries. The formal properties of groups
are axiomatized as follows:

Definition 1 (groups). A set G with binary operation · is a group if:

1. (Closure) For all a, b ∈ G, a · b ∈ G.
2. (Associativity) For every a, b, c ∈ G, a · (b · c) = (a · b) · c.
3. (Identity) There is an identity e ∈ G such that e · a = a · e = a, for all a ∈ G.
4. (Inverse) For each element a ∈ G, there is an inverse element b ∈ G such

that a · b = b · a = e.

In other words, doing one symmetry, then another, is still boring (closure); symmetries are trans-
formations, and compose as such (associative); there is a trivial symmetry which does nothing
(identity); and any symmetry can be done “backwards” (inverse).

Usually, the first example of a group we encounter is the set of integers G = Z with respect
to addition. Soon afterwards, we encounter the set of nonzero reals with respect to multiplication,
G = R∗. In both cases, the order in the binary operator doesn’t matter, with a · b = b · a, where ·
is the group operation (+ for the integers and × for the reals). Such a group is called commutative
or Abelian. In quantum mechanics, we use matrices everywhere, and since matrix multiplications
is not usually commutative, we obtain non-Abelian groups.

There are a few more basic definitions we need. The first is the notion of one group being
contained inside another:

Definition 2 (subgroups). Let (G, ·) be a group. A set H ⊆ G is a subgroup if
it is closed under ·, the group operation.

We also want to know when two groups have the “same” structure:

Definition 3 (homomorphism and isomorphism). Let G,H be groups. A
map φ : G→ H is a homomorphism if

φ(a ·G b) = φ(a) ·H φ(b).

An isomorphism is a bijective homomorphism. We view G and H as “the same”
just in case there is an isomorphism between them.

Let’s explore these definitions in a familiar example.

6

Exercise 1. We’ll consider the set of unitary N ×N matrices U(N), defined by
UU † = U †U = IN , where IN is the N ×N identity.

(a) Show that U(N) forms a group.

(b) Demonstrate explicitly that for N > 1, this group is non-Abelian.

(c) Verify that the map φ : U(1) → U(N) given by

φ(eiθ) =

eiθ

1
. . .

1

is a homomorphism.

(d) For each k < N , find a subgroup of U(N) isomorphic to U(k).

The Pauli group and quaternions
In quantum mechanics, our groups are formed by matrices acting as transformations on Hilbert
space. For instance, for n qubits, the Hilbert space has N = 2n dimensions, and the associated
group of unitary matrices (or gates) is U(2n). But this is a very large set, and as humans trying to
build a quantum computer, it’s interesting to see what we can do with simple subgroups of U(2n).

We start with the basic example of the Pauli group, which as the name suggests, is a general-
ization of the set of single-qubit Pauli operators X,Y, Z. To make it easier to talk about, let’s first
introduce a slick notation for groups.

Definition 4 (generators and relations). Often, we can express a group
in terms of the products a few basic elements called generators g1, . . . , gn. The
remaining structure of the group can be encoded in relations r1, . . . , rm satisfied
by the generators. We write the corresponding group

G = ⟨g1, . . . , gn|r1, . . . , rm⟩.

As physicists, we reserve the right to be sloppy and write only generators, leaving
relations implicit.

As a warm-up, we’ll describe the Pauli group on a single qubit.

Exercise 2. The Pauli group on a single qubit is more or less identical to the
(unit) quaternions, a weird number system defined in the 19th century. This
exercise explores both.

(a) In 1843, the great Irish mathematician William Rowan Hamilton was walking
along the Royal Canal in Dublin, when he was struck by a sudden inspiration.
With his penknife, he carved this gnomic inscription on Brougham Bridge:

7

i2 = j2 = k2 = ijk = −1.

The objects i, j, k are called quaternions, and generalize the imaginary unit
i =

√
−1. Show that Q8 = {±1,±i,±j,±k} = ⟨i, j, k⟩ forms a group under

multiplication, using Hamilton’s Brougham Bridge rules.

(b) The (single-qubit) Pauli group is generated by Pauli matrices under multi-
plication:

P1 = ⟨X,Y, Z⟩.

How big is the group?

(c) The Pauli algebra obeyed by the operators is X2 = Y 2 = Z2 = −iXY Z = I,
where I is the 2 × 2 identity matrix. This looks a lot like the Brougham
Bridge rules! Find a subgroup of P1 isomorphic to Q8.

The Pauli group on n qubits, Pn, consists of all tensor products of Pauli operators acting on
individual qubits. We use subscripts to indicate which qubit these act on, e.g. if n = 3, then
X1 = X ⊗ I⊗ I. So, being maximally sloppy with notation, we have

Pn = ⟨X1, . . . , Xn, Y1, . . . Yn, Z1, . . . Zn⟩ = ⟨Xi, Yi, Zi⟩.

The relations are just the Pauli algebra on each qubit, and the multiplication rule is given by⊗
iAi ·

⊗
iBi =

⊗
i(Ai ·Bi).

Exercise 3. Let’s get acquainted with the Pauli group Pn.

(a) Let α ∈ {0, 1}n be an n-bit string, with α(i) the ith bit. Define the elements

X(α) =

n⊗
i=1

X
α(i)
i , Z(α) =

n⊗
i=1

Z
α(i)
i ,

with X0
i = Z0

i = I. Derive the relations

X(α)Z(β) = (−1)α·βZ(β)X(α)

X(α)X(β) = X(α⊕β)

Z(α)Z(β) = Z(α⊕β)

where α · β is the dot product modulo 2, and α⊕ β is bitwise xor as usual.

(b) Show that all elements in Pn can be written in the form CX(α)Z(β) for some
α, β ∈ {0, 1}n and C ∈ {±1,±i}.

(c) Let P̂n = {X(α)Z(β) : α, β ∈ {0, 1}n}. What subgroup of Pn do these
elements generate?

Sharing quantum secrets
The Pauli group has many applications. One of the most exciting is to quantum cryptography,
where we can use the Pauli group to build an unbreakable quantum code! The basic problem is as

8

follows. Alice, a quantum computing researcher, wants to share an n-qubit density matrix ρ called
the message state with her collaborator Bob. Eve, their unscrupulous competitor, can potentially
intercept the state Alice sends, and will scoop them if ρ is unencrypted. Is it possible for Alice
to conceal the state ρ in a cipher state ρ̃, so that even if Eve obtains ρ̃ she learns nothing? Of
course, the encryption should also be reversible so that Bob can decode it. Such a scheme is called
a quantum one-time pad.

The simplest way to implement reversible transformations in quantum mechanics is with unitary
operators. So, we can imagine that Alice picks some unitary U ∈ U(2n), and applies it according
to the usual rule for updating density matrices:

ρ 7→ ρ̃ = UρU †.

If Bob knows U , he can easily decode. But here’s the kicker: if ρ̃ contains absolutely no information
about ρ, that simply means it cannot change with ρ, i.e. ρ̃ is constant. Sadly, this is impossible!

Exercise 4. Verify that no unitary U maps arbitrary ρ to fixed ρ̃.

While encoding with a single unitary does not work, a more general possibility is a probability
distribution over unitaries, (pk, Uk). This is a special case of a general formalism called a quantum
channel, which we won’t define here. The corresponding cipher state is

ρ 7→ ρ̃ =
∑
k

pkUkρU
†
k .

To implement this, Alice and Bob meet beforehand and pick a key k randomly according to the
distribution pk. Alice later sends ρ̃k = UkρU

†
k , which Bob can easily undo if he knows k. But the

initial randomization step means that the whole density (over many iterations of the scheme) is
described by the statistical admixture ρ̃. The specific state ρ̃k cannot be constant, but the whole
density ρ̃ can be constant. Let us first determine what constant it must be!

Exercise 5. Show that, if ρ̃ is constant, then ρ̃ = I2n/2n, the maximally mixed
density matrix. Hint. Consider the image of the mixed density.

Given Exercise 5, our job is now to find a distribution (pk, Uk) such that∑
k

pkUkρU
†
k =

I2n
2n

for any n-qubit density ρ. (A distribution with this property is called a 1-design, coming under the
broader umbrella of combinatorial designs.) Our intuition from the single unitary case suggests this
is impossible, but thankfully, that intuition is wrong! It turns out that the uniform distribution
over the Pauli group works. Before we prove this, we need a technical result.

Exercise 6. The Hilbert-Schmidt inner product of 2n × 2n matrices M1,M2 is

⟨M1,M2⟩ = tr[M1M
†
2].

(a) Argue that elements of the set P̂n are orthogonal with respect to this inner
product and hence span the set of 2n × 2n matrices.

9

(b) Explain how to expand an arbitrary n-qubit density ρ in terms of P̂n, i.e.

ρ =
∑
αβ

cα,βX
(α)Z(β).

We now have assembled all the ingredients needed to bake a delicious quantum one-time pad.
Choose a uniform probability distribution pk = (4 · 22n)−1 over the elements of Pn. Surprisingly,
the simplest probability distribution over the simplest nontrivial subgroup of U(2n) works!

Exercise 7. You may wish to revisit Exercise 3, 6, and 7 before embarking.

(a) The average over the full Pauli group is slightly redundant. Demonstrate
that

1

4 · 22n
∑
U∈Pn

UρU † =
1

22n

∑
α,β∈{0,1}n

X(α)Z(β)ρZ(β)X(α).

(b) Show that, for fixed γ ∈ {0, 1}n,

∑
α∈{0,1}n

(−1)α·γ =

n∏
i=1

[
1 + (−1)γ(i)

]
= δγ,0.

(c) Using Exercises 3, 6 and 7(b), conclude that for an arbitrary ρ,

1

4 · 22n
∑
U∈Pn

UρU † =
I2n
2n
.

Thus, averaging over the Pauli group provides unbreakable quantum security for our researchers
Alice and Bob. As discussed in Exercise 7(a), the full Pauli group Pn is slight overkill. Instead,
we can consider a uniform distribution over the elements X(α)Z(β) of P̂n. There are 22n elements,
with two classical bits α(i), β(i) for every qubit Alice wants to transmit to Bob. For encryption
and decryption, up to n Paulis are required (if we allow Y), so the whole procedure is efficient.

We finish with a cute extension. Suppose that Bob is Alice’s graduate student. Alice wants
Bob to perform some Pauli operations on ρ, say X(γ)Z(δ), but without giving Bob access to the
state (i.e. the key). At the same time, she wants to protect her state from Eve. Is it possible to
farm out work to her graduate student but keep the state secret from both Bob and Eve?

Exercise 8. Alice sends ρ̃k to Bob without telling him the key. From the view-
point of both Bob and Eve, the full admixture is ρ̃ = I2n/2n. Show that if Bob
applies a set of Paulis X(γ)Z(δ) to the density he receives, then returns it to Alice,
he completes the required computation.

This property is called homomorphic encyption. Like a group homomorphism, the encryption is
structure-preserving, allowing Bob to safely operate on Alice’s data without the key. Everything
ties back to group theory!

10

III. Parallel Parking

The Hadamard transform
Morally, quantum computing is powerful because of the parallelism afforded by superposition.
Thus, a common first step in most quantum algorithms is to prepare a uniform superposition of
states. Let’s see how this is done.

Exercise 1. In a sentence, apply Hadamards everywhere. But we should check
this works!

(a) Suppose we have n qubits in the |1⟩ state, i.e. the state |1⟩⊗n. Show that
applying a Hadamard to each produces

H⊗n|0⟩⊗n =

(
|0⟩+ |1⟩√

2

)⊗n
=

1√
2n

∑
x∈{0,1}n

|x⟩.

(b) Explain why this is precisely an even superposition,(
|0⟩+ |1⟩√

2

)⊗n
=

1√
2n

∑
x∈{0,1}n

|x⟩.

Hint. Use induction, or take the inner product with ⟨x′| for x′ ∈ {0, 1}n.

We can modify this easily to prepare more interesting superpositions.

Exercise 2. The Hadamard transform applies Hadamards everywhere, but to
arbitrary computational basis states. Let’s see what happens.

(a) Show that for a single qubit, with x ∈ {0, 1}, we can write the action of a
Hadamard as

H|x⟩ = |0⟩+ (−1)x|1⟩√
2

.

(b) For two qubits in the computational basis, |x1⟩ and |x2⟩, x1, x2 ∈ {0, 1},
verify that

H⊗2|x1⟩|x2⟩ =
|00⟩+ (−1)x2 |01⟩+ (−1)x1 |10⟩+ (−1)x1+x2 |11⟩√

22

=
1√
22

∑
y∈{0,1}2

(−1)x1y1+x2y2 |y⟩.

(c) Let x·y = x1y2+· · ·+xnyn denote the bitwise inner product for x, y ∈ {0, 1}n.

11

Extend your result from (b) to give

H⊗2|x⟩ = 1√
2n

∑
y∈{0,1}n

(−1)x·y|y⟩.

Hint. Again, you can either use induction (with base case (a) or (b)) or
directly compute the inner product with ⟨y′|.

(d) Applying H⊗n is called the Hadamard transform. Consider the superposition

|ψ⟩ = 1√
2n

∑
y∈{0,1}n

(−1)f(y)|y⟩

where f is any binary function f : {0, 1}n → {0, 1}. Show that the Hadamard
transform of this state is

H⊗n|ψ⟩ = 1√
2n

∑
y,z∈{0,1}n

(−1)f(y)+y·z|z⟩,

and deduce from the special case f(y) = y · x that the Hadamard transform
is self-inverse.

Since H2 = I, it follows immediately that H⊗n is self-inverse, so part (d) is really just a sanity
check for our superposition formula. The Hadamard transform is closely related to the Quantum
Fourier Transform, one of the central tools in quantum algorithms, to be discussed later.

Oracles
In a sense, it is “obvious” that quantum parallelism makes quantum computers more powerful than
classical computers. Using a Hadamard transform, I can prepare a superposition of 2n states, and
by applying a single n-bit unitary U , perform exponentially many classical computations in one fell
swoop! But linearity giveth and linearity taketh away. When we measure at the end of the day,
we cannot learn U |x⟩ for each x ∈ {0, 1}n. Instead, we just get a single number, and it is random.
The subtlety and art of quantum computing lies in learning how to use the exponential power of
quantum parallelism without throwing everything away when we make our final measurement.

To begin with, let’s see how to use parallelism in the “obvious” way mentioned above. Suppose
we have a binary function on n-bit strings, f : {0, 1}n → {0, 1}. We can define a gate Uf which
acts on n+ 1 bits. The first n bits store the argument, and the last bit stores the answer:

Uf |x, y⟩ = |x, y ⊕ f(x)⟩.

This is unitary, and in fact U2
f = I. Of course, Uf itself might be very hard to construct, but for

our purposes, we will simply regard it as a black box or oracle. Using Uf is called an oracle query.
Since the input qubits stores the query, we call it the query register.

Exercise 3. Here is our first little mini-algorithm: apply the Hadamard trans-
form, then make an oracle query. As usual, we translate these words into math.

12

(a) Show that

Uf |x⟩
(
|0⟩ − |1⟩√

2

)
= (−1)f(x)|x⟩

(
|0⟩ − |1⟩√

2

)
.

(b) Prepare the state |0⟩⊗n|1⟩. The state |ψf ⟩ is the result of applying the
Hadamard transform and then making an oracle query Uf . Confirm that
|ψf ⟩ takes the form

|ψf ⟩ = UfH
⊗(n+1)(|0⟩⊗n|1⟩) = 1√

2n

∑
x∈{0,1}n

(−1)f(x)|x⟩
(
|0⟩ − |1⟩√

2

)
.

So, we can perform an exponential number of classical calculations f(x) in the “obvious” way. The
problem, now, is how to extract anything useful from this, since the information is stored in phases.

If we measure the input n qubit, we will learn only a single phase f(x). This is not particularly
impressive. However, if we place some global constraints on f , involving all the values f(x), it is
plausible that by some clever manipulations we can extract global information about |ψf ⟩ from
a single measurement. We will give three algorithms for this below. These constitute strong
theoretical evidence that quantum computers can outperform classical computers.

Deutsch-Jozsa algorithm
You have already seen Deutsch’s algorithm in lectures. The Deutch-Jozsa algorithm is a simple
extension to the n-bit case we are considering. First, we will make the global constraint (technically
called a promise) that the function f is either constant or balanced: the function is always the same
(constant), or 1 half the time and 0 the rest.

Exercise 4. The Deutsch-Josza algorithm is simply to Hadamard transform the
parallelized state, query the oracle, then measure the query register.

(a) Apply the earlier result 2(d) to conclude that

H⊗n|ψf ⟩ =
1

2n

∑
x,z∈{0,1}n

(−1)f(x)+x·z|z⟩
(
|0⟩ − |1⟩√

2

)
.

(b) Show that if we measure the query register, the state |0⟩⊗n is returned with
probability |A0|2, where

A0 = ⟨0|⊗n 1

2n

∑
x,z∈{0,1}n

(−1)f(x)+x·z|z⟩ = 1

2n

∑
x∈{0,1}n

(−1)f(x).

(c) Argue that if f is constant, then A0 = 1 and you are guaranteed to return
|0⟩⊗n. If it is balanced, show A0 = 0 and hence we cannot return |0⟩⊗n.

In other words, when we look at the query register, we can tell whether f is constant or
balanced depending on whether we observe |0⟩⊗n or not. This algorithm is exact, and uses only a
single evaluation of f . In contrast, the best deterministic classical algorithm requires us to check
at least half of the arguments, or O(2n/2) function queries! It looks like we have an exponential

13

speedup. Unfortunately, this is a bit misleading. A slightly fairer comparison is to the randomized
classical algorithm. Like Deutsch-Jozsa, it takes a constant number k of function queries, with
probability of success increasing exponentially with k. Deutsch-Jozsa is still faster, but it is really
only a “constant” speedup.

Bernstein–Vazirani algorithm
We can keep playing this game, coming up with a global promise about f , and making a clever
measurement to determine some associated global information. The Bernstein–Vazirani algorithm,
for instance, promises that f is a “secret dot product”, f(x) = x · s for some secret s ∈ {0, 1}n. As
with Deutsch-Jozsa, we parallelize, Hadamard transform, query, then measure.

Exercise 5. Use Exercise 2(d) to show s is returned with probability |As|2 = 1.

In other words, the query register contains our answer exactly after a single query. The best
classical algorithm requires n queries, on the “basis” strings bi = 0i10n−i−2, with

f(bi) = s · bi = si.

So we reconstruct the “secret” s from the n function calls f(bi). This is a linear improvement on
the best classical algorithm, which is beginning to look like progress. But it’s still not exponential.

Simon’s algorithm
Based on the preceding examples, it’s easy to generalise to a function f : {0, 1}n → {0, 1}n, and an
oracle acting on x, y ∈ {0, 1}n as

Uf |x, y⟩ = |x, y ⊕ f(x)⟩,

where y ⊕ f(x) is bitwise as usual. We will prepare a state |Ψf ⟩ slightly different from the above.

Exercise 6. Prepare the all-zero state |0⟩⊗n|0⟩⊗n. The parallelized state |Ψf ⟩ is,
as before, prepared by Hadamard transforming the query register and making an
oracle query. Show that

|Ψf ⟩ = Uf (H
⊗n ⊗ In)|0⟩⊗n|0⟩⊗n =

1√
2n

∑
x∈{0,1}n

|x⟩|f(x)⟩.

Once again, to do something useful, we need to make a global promise about f so a single
measurement gives nontrivial global information. Simon’s algorithm starts with the promise that
there is a secret string s ∈ {0, 1}n such that, for x ∈ {0, 1}n,

f(x) = f(y) ⇐⇒ y = x⊕ s.

The algorithm proceeds as before, but with a subtle difference.

Exercise 7. Like the previous algorithms, we Hadamard transform the query reg-
ister. The subtlety is that before, and afterwards, we measure the output register,
rather than the query register. Let’s see what that buys us.

14

(a) First, measure the output register in |Ψf ⟩, and suppose the outcome is |w⟩.
Explain why the query register is in the state

|x⟩+ |x⊕ s⟩√
2

.

for some x ∈ {0, 1}n.

(b) Now Hadamard transform the query register. Show that it is in the state

1√
2n

∑
z∈{0,1}n

(
(−1)x·z + (−1)(x+s)·z√

2

)
|z⟩.

(c) Finally, measure the output register. Argue that the only terms |z⟩ with
nonzero amplitude Az satisfy z · s = 0.

We have learnt something nontrivial about s, namely that it is orthogonal to z. If we repeat
the circuit multiple times, we will gradually winnow down which subspace it is in, until we can
uniquely determine s. The number of queries needed is, on average, O(n), since each independent
z cuts the space in half, so we go from the whole space of 2n points to 21 after acquiring n − 1
independent vectors z. What is the best classical algorithm?

Exercise 8. Consider f : {0, 1}n → {0, 1}n with the Simon promise, f(x) = f(y)
iff y = x ⊕ s for a “secret” s. Since there is no other structure at hand, the best
approach is to randomly guess x and y until we find a “collision”, f(x) = f(y).
This is called the “birthday problem”. Explain why this algorithm takes O(

√
2n)

random guesses.

The best randomized classical algorithm is exponential, while Simon’s algorithm is O(n). Thus,
we have our first example of an exponential quantum speedup! Unfortunately, the problem is rather
contrived and useless, which led to reviewers initially rejecting Simon’s paper. Scott Aaronson
explains what happened next:

So the story goes that Simon wrote a paper about this theoretical black-box problem with
an exponential quantum speedup, and the paper got rejected. But there was one guy who
was like, “Hey, this is interesting.” He figured that if you changed a few aspects of what
Simon was doing, you could get a quantum algorithm to find the periods of periodic
functions, which would in turn let you do all sorts of fun stuff. That guy was Peter
Shor.

Aaronson is alluding to Shor’s algorithm, a famous quantum algorithm which factorizes numbers as
a special case. It is most definitely useful! Together, these examples strongly suggest that quantum
computers provide complexity-theoretic leverage over their classical cousins, not only in Simon’s
contrived black box problem, but the real world.

15

IV. Fourier and Fourierer

This assignment introduces the Quantum Fourier transform (QFT) for qudits, and describes how
to implement it quickly on a quantum computer. This is our first (and perhaps only) practically
useful exponential speedup over classical computers!

Position and momentum
Consider a d-dimensional Hilbert space Hd. We will label the computational basis |n⟩, n = 0, . . . , d−
1. To connect to our intuitions from ordinary quantum mechanics, we can view this standard basis
as eigenvectors of a position operator, X|n⟩ = xn|n⟩. We could array these on a line, but a more
natural choice is to array positions at equal intervals on the unit circle. In other words, we will
choose xn = ωn, where ω = e2πi/d is a primitive d-th root of unity. Thus, we define a position
operator

X =

1 0 · · ·
0 ω · · ·

. . .
0 · · · ωn−1

 .
This is also called the clock matrix, since it tells the time on the unit circle.

Given this choice of representation, it’s natural to seek eigenvectors of a momentum operator
P . Put differently, we would like to look for objects which are eigenvectors of translation, or rather,
rotation around the circle. Let P implement ccw rotations by 2π/d, taking P |n⟩ = |n+ 1⟩. Then

P =

0 1 0 · · ·
0 0 1 · · ·

. . .
1 · · · 0

 .
This is sometimes called the shift matrix.

Exercise 1. Although canonical commutation relations cannot hold for any choice
of X and P in a finite-dimensional Hilbert space, we can nevertheless show these
operators do not commute.

(a) In ordinary quantum mechanics, we have the canonical commutation rela-
tions [X,P] = iℏI. Prove that there are no finite-dimensional operators
which satisfy this. This is the wrong thing to look for with qudits!

(b) Show that XP = ωPX, so these measurements do not commute.

(c) Check that, for d = 2, X and P anticommute, and relate them to Pauli
matrices. (Our choice of label X is unfortunate in this context.) In a sense,
(b) simply generalizes this familiar anticommutation relation.

For our next trick, we determine the eigenvectors of P .

16

Exercise 2. Write an arbitrary vector |χ⟩ = χn|n⟩, using Einstein summation
notation to sum over n.

(a) Suppose P |χ⟩ = λ|χ⟩ for eigenvalue λ. Argue that χn−1 = λχn, where n is
taken modulo d.

(b) Set n = d in (a) to conclude that λd = 1. This means λ is a d-th root of
unity.

The previous exercise gives a set of d linearly independent, normalized eigenvectors of P , one
for each choice of λ = ω−s:

|χs⟩ = 1√
d
ωsn|n⟩. (1)

The state |χs⟩ has “momentum” ω−s
d . Although it is guaranteed by various linear algebra theorems,

let’s check this gives an orthonormal basis.

Exercise 3. Check that
⟨χt|χs⟩ = δst.

Hint. Recall the geometric sum

1 + r + · · ·+ rp =
1− rp+1

1− r
.

We can plonk these momentum eigenstates into the columns in a large matrix,

Wd =
[∣∣χ0

⟩
,
∣∣χ1
⟩
, . . . ,

∣∣∣χd−1
⟩]
.

This is called the Walsh-Hadamard matrix, and indeed, it is a generalization of the Hadamard
matrix, as you can easily check.

Exercise 4. In this exercise, we’ll consider a qubit, i.e. d = 2.

(a) Define the clock and shift matrix in the computational basis.

(b) Check that the states |±⟩ = (|0⟩ ∓ |1⟩)/
√
2 are indeed eigenvectors of the

shift matrix, with square roots of unity as eigenvalues.

(c) Verify that W2 = H is the usual Hadamard matrix.

Since the basis is orthonormal, the matrix is unitary, with WdW
†
d =W †

dWd = I, or

⟨χt|χs⟩ = δts, |χs⟩⟨χs| = I.

We can use these to perform a change of eigenbasis from X to P . This change of eigenbasis is
called the discrete Fourier transform (DFT).

Exercise 5. Consider an arbitrary |ψ⟩ = an|n⟩ = As|χs⟩. Using the unitarity of

17

the Walsh-Hadamard matrix, confirm that

an =
1√
d
ωnsAs, As =

1√
d
ω−nsan.

The DFT is a passive transformation, in the sense that it leaves the vector alone, but relates
the coefficients in two different bases. In quantum computing, we only have access to a single
basis: the computational basis. So, instead of looking at the same vector differently, we need
to actively change to achieve anything useful. This active transformation is called the quantum
Fourier transform (QFT), defined on the computational basis by

QFT : |n⟩ 7→ |χn⟩ =Wd|n⟩,

and extended to all states by linearity.

Exercise 6. Show that the QFT replaces the coefficients an with their Fourier
duals, i.e.

QFT(an|n⟩) = An|n⟩.

Awesome powers
The DFT and QFT in a sense ask different questions. Since the DFT doesn’t change the state, it
really means finding the coefficients As. The QFT, on the other hand, changes the state, and in
many cases (for instance, quantum computing), that’s all we want. We don’t need the individual
coefficients! But in both cases, the computation can be sped up dramatically when the Hilbert
space is a tensor product.

For simplicity, we will consider the case of λ qudits, i.e. H = H⊗λ
d , though the decomposition

is more general. The Hilbert space H has dimension dλ = D. Let ni = 0, . . . , d − 1 label the X
eigenbasis of the i-th tensor factor, and define the standard base-d expansion

N(n0, n1, . . . , nλ−1) := n0 + n1d+ · · ·+ nλ−1d
λ−1 =

λ−1∑
ℓ=0

nℓd
ℓ. (2)

In this section, we restore explicit summation for clarity. The number N runs from 0 to D− 1,
labelling a position eigenbasis of H, with

|N⟩ = |n0⟩ ⊗ |n1⟩ ⊗ · · · ⊗ |nλ−1⟩.

Let ωD, ωd denote respective primitive roots, and |χS(D)⟩, |χ
s
(d)⟩ position eigenvectors, in the tensor

power and its factors. Let’s see how they’re related!

Exercise 7. As in (1), let

|χS(D)⟩ =
1√
D
ωNSD |S⟩.

18

(a) With N given by (2), show that

⟨N |χS(D)⟩ =
λ∏
ℓ=0

1√
d

exp
(
2πiSnℓd

ℓ−λ
)
.

(b) Conclude that the momentum eigenvectors factorize, with

|χS(D)⟩ =
λ−1⊗
ℓ=0

|χSdℓ−λ+1

(d) ⟩.

(c) We can simplify further by expanding S itself in base d. Define

S := s0 + s1d+ · · ·+ sλ−1d
λ−1 =

λ−1∑
ℓ=0

sℓd
ℓ (1)

S(j) := s0d
ℓ−λ + s1d

1+ℓ−λ + · · ·+ sλ−ℓ−1d
−1 =

λ−j−1∑
ℓ=0

sℓd
j+ℓ−λ. (2)

Show that, in base d,

S(j) = 0.sλ−j−1sλ−j−2 . . . s0.

(d) Using the previous question, verify that

exp
(
2πiSnℓd

ℓ−λ
)
= exp

(
2πiS(ℓ)nℓd

ℓ−λ
)

and conclude as a result that

|χS(D)⟩ =
λ−1⊗
ℓ=0

|χS(ℓ)

(d) ⟩ =
1√
D

λ−1⊗
ℓ=0

d−1∑
nℓ=0

e2πiS
(ℓ)nℓ |nℓ⟩. (3)

It seems innocuous, but this little factorization leads to a dramatic quantum speedup. To
calculate the QFT or the DFT using a classical computer, without exploiting the factorization, we
must compute the D coefficients AS . Each of these requires O(D) arithmetical operations, since

AS =
1√
D

D−1∑
N=0

ω−NSaN .

All told, this takes O(D2) = O(d2λ) operations. This is exponential! Let’s how much better we
can do using tensor factorization.

Exercise 8. The Fast Fourier Transform (FFT) exploits (3) to compute the DFT
quickly for a tensor power.

(a) Argue that each component AS takes only O(dλ) basic arithmetic operations
to evaluate.

(b) Conclude that the FFT takes O(dλ+1λ) steps. This is still exponential, but

19

much less so!

There are other variants of the FFT which can speed things up further with additional as-
sumptions about the numbers, but in general, this is the best we can do on a classical or quantum
computer if we want to find the individual Fourier coefficients.

Short circuits
The QFT does not find individual coefficients. Instead, it rotates the computational basis elements
into the momentum eigenbasis. On a classical computer, this is just as hard as a DFT, since we
need to compute the individual coefficients AS as before. But on a quantum computer, we can
exploit the fact that superposition and tensor products are baked into the hardware to sidestep the
DFT and directly compute the QFT. As we will show shortly, there is a quantum circuit which
takes a mere O(λ2) steps! This is a genuine exponential speedup over the best known classical
algorithm, and the most spectacular result in quantum computing, from a complexity-theoretic
view. (Simon’s Problem also has exponential speedup, but unlike the QFT, is not useful.)

Let’s define the problem a little more carefully. First of all, we are going to fix d, the qudits
that form the basis of our computer, and let the number λ vary, with D = dλ. We will construct
the Walsh-Hadamard matrix WD that performs the QFT in O(λ2) steps using two-qudit gates we
will define in a moment. A special case is the usual qubit circuit for performing the QFT, where
d = 2. Let’s introduce our gates. In addition to the qudit Walsh-Hadamard matrix, Wd, first define
the bunched position operator

X
(t)
d := Xd1−t

d = diag
(
1, e2πi/d

t
, e2πi·2/d

t
, . . . , e2πi(d−1)/dt

)
.

This is “bunched” since it takes the d points which were originally equally spaced on the unit circle,
and bunches them onto an arc of angular size 2πd1−t. These provide a natural set of operators for
doing the base d expansions we need for (3).

Exercise 9. Let S and S(ℓ) be as above. Show that(
X

(λ−ℓ)
d

)s0 (
X

(λ−ℓ−1)
d

)s1
· · ·
(
X

(2)
d

)sλ−ℓ−2

= XS′
d (4)

where S′ = S(ℓ) − sλ−ℓ−1d
−1.

There is a controlled version of bunching, defined by

CX
(t)
d |n⟩|m⟩ =

(
X

(t)
d

)m
|n⟩.

For qubits, this reduces to m = 0 (off) and m = 1 (on), but for qudits we get a power. As usual,
in a circuit we place a black dot on the control qudit. With our gate set in hand, we can finally
define the circuit. The basic idea of the algorithm for the QFT is simple. We will define a circuit
which acts on the basis elements as follows:

|sℓ⟩ 7→
1√
d

∑
n

e2πS
(ℓ)n|n⟩. (5)

20

Exercise 10. Using (3) and linearity, confirm that a circuit performing (5) com-
putes the QFT of |ψ⟩ ∈ HD.

Our circuit is simple and elegant, but works slightly better if we first reverse the order of qudits,
so |sℓ⟩ 7→ |sλ−ℓ−1⟩. We will omit this step in our circuit. As usually happens when we want to
exploit quantum parallelism, we then apply the Walsh-Hadamard matrix to each qudit, taking a
position eigenvector to a momentum eigenvector. So

|sℓ⟩ 7→ |sλ−ℓ−1⟩ 7→Wd|sλ−ℓ−1⟩ = |χλ−ℓ−1
(d) ⟩.

We now just apply the bunching relation (4) to obtain the correct factor for (3).

Exercise 11. Let’s put everything together and blow classical computers out of
the water!

(a) Using Exercise 9, prove that

XS′
d |χλ−ℓ−1

(d) ⟩ = 1√
d

∑
n

e2πS
(ℓ)n|n⟩.

(b) Conclude from Exercises 9 and 10 that the following circuit does the QFT:

(c) Show that the number of gates in this circuit is λ2/2. One subtlety we have
ignored is the number of swaps required. Assuming that swapping adjacent
qudits is an elementary operation, show that the total number of gates is λ2.

Most textbooks compress all this into a couple of pages of dense algebra. Hopefully, we’ve
unzipped the inner workings of the QFT a little.

21

V. Pete Breaks the Internet

The goal of this (long and optional) assignment is to understand how to make and break the
cryptographic systems underlying internet security. In particular, we will see what real-world
implications a fully-fledged quantum computer would have, and use this as a launch point to
discuss the ethics of quantum computing.

1. Making public key cryptosystems
Suppose Alice and Bob want to exchange sensitive information over an insecure channel, e.g. the
internet. The final member of the cryptographic trinity is Eve, a malicious third party who wants
to compromise Alice and Bob’s communications. If Alice and Bob can meet in person beforehand,
they can agree on a shared scheme for encrypting their information. For instance, if they know in
advance the length of messages they want to exchange, e.g. a credit card number, they can share
a one-time pad consisting of random bits. This is provably unbreakable.

Of course, this scheme is hugely constraining. In the world of internet commerce, Alice and Bob
will often be on other sides of the world, so meeting in person is impractical. If Bob from Boston
wants to buy a hand-knit yak wool sweater from Alice in Amdo, and wants to pay her electronically,
how can he ensure his details aren’t compromised by Eve? The ingenious solution is public key
cryptography. Public key cryptography was invented by Diffie and Hellman [1] in the late 70s, and
the first practical scheme developed by Diffie and Hellman and independently by Merkle [2]. Many
of the ideas were actually discovered earlier by Ellis, Cocks and Williamson [3], but because they
were working for Britain’s codebreaking agency GHCQ, their work was classified.

1.1. The suitcase analogy

Before launching into the mathematical details, there is a simple analogy which conveys the main
idea. Instead of sending credit card data to Alice, suppose Bob wants to send cash in a suitcase. He
first attaches a combination lock, then sends the suitcase to Alice. Remember that Alice and Bob
have not met, and do not have a more secure communication channel over which Bob can safely
tell her the combination. Instead of opening the suitcase, Alice attaches her own combination lock,
and sends it back to Bob. Bob now removes his combination lock, and sends the suitcase back to
Alice. By removing her own lock, Alice can finally retrieve Bob’s money, thereby concluding the
transaction! We draw the exchange below.

Alice and Bob never needed to meet or exchange information on an insecure channel; they just
needed their own (hopefully secure) locks. A public key cryptosystem (PKC) works in much the
same way. Metaphorically, a PKC provides suitcases and combination locks that Alice and Bob
can set themselves. But it makes the suitcase and lock out of math, which is cheaper, quicker to
send, and harder to break! In the next section, we will introduce the first PKC, developed by Diffie,
Hellman and (independently) Merkle.

22

1.2. Diffie-Hellman-Merkle (DHM) and discrete logarithms

The original PKC is called Diffie-Hellman-Merkle (DHM) key exchange, since it only allows Alice
and Bob to share a key rather a full message. The key is a shared, secret number which can be used
for a different encryption method, e.g. the combination of a combination lock. In mathematical
terms, Alice and Bob publicly announce a large prime p and some integer g modulo p. These are
known to everyone, including Eve. This is like announcing the suitcase and brand of combination
lock.

To put a “lock” on the suitcase, Bob picks a large power gb, modulo p. (This can be done
efficiently using modular exponentiation, covered elsewhere.) The number b is his “combination”,
and the result is a singly-locked “suitcase”:

B ≡ gb mod p.

This number B is called Bob’s public key. Bob sends this to Alice, who raises the result to her own
power, a:

K ≡ Ba ≡ gab mod p.

Alice has added her on lock onto Bob’s lock, which is like an empty suitcase with both locks,
mathematically represented by K. They now repeat the protocol, but in reverse order. Alice raises
g to the power a, yielding her public key

A ≡ ga mod p.

Alice sends A to Bob, who raises it to his secret power b:

K ≡ Ab ≡ gab mod p.

23

In the suitcase analogy, both Alice and Bob have empty, doubly-locked suitcases. The analogy is
a little strained, since we need to assume that the order of locks in the “double-locking” procedure
is irrelevant, and that the locks can then be used as an input to another locking scheme! But
mathematically, it’s much simpler: Alice and Bob just share a number K.

Let’s think about the security of this procedure. Eve knows g and p, since they were publicly
announced, and can potentially intercept the “singly-locked suitcases” A ≡ ga and B ≡ gb. If she
can quickly take logarithms modulo p, also called discrete logarithms, she can compute a and b from
these. Using modular exponentiation, she then immediately calculates the key K ≡ gab. So the
security of key exchange boils down to the following question: how hard are discrete logarithms?
We start exploring this question in the first exercise.

Exercise 1. Let’s start with the most terrible algorithm.

(a) Let F∗
p denote the multiplicative group modulo p. Show that gp ≡ 1 mod p

for any element g.

(b) Argue that F∗
p is cyclic, i.e. there is a multiplicative generator g such that

F∗
p = {1, g, g2, . . . , gp−1}. Such a g is called a primitive element. Hint. Use

the fact that every finite Abelian group is a product of cyclic groups. If you
like elementary proofs, check out this cute collection.

(c) Show that, for primitive g, the “discrete logarithm” logg h of any element
h ∈ F∗

p is well-defined, provided it takes values in Zp−1.

(d) From part (c), deduce that the complexity of taking discrete logarithms via
brute force is O(p).

Taking discrete logarithms in the group F∗
p can be done in O(p) time. So, if Alice and Bob want

to protect themselves from Eve, they should choose an exponentially large prime p, say p ∼ 2k, so
the prime takes k bits to specify. Brute force enumeration will then be exponential in k, O(2k).
We will discuss better algorithms for taking discrete logs below. You might wonder if we can jerry
rig the DHM scheme to send messages. ElGamal encryption, a full-fledged PKC invented by Tahar
ElGamal [5] in 1985, does just this.

Exercise 2. Bob wants to send Alice his credit card details so she can charge
him for the yak wool sweater. As before, the numbers g and p are made public,
and now Bob chooses a one-off key or nonce k, for this message only, while Alice
uses her private key a to create a public key A ≡ ga as before. Alice sends her
public key to Bob, while Bob encodes his plaintext as a number m ∈ F∗

p. He then
computes two encrypted ciphertexts, which he sends to Alice:

c1 ≡ gk mod p, c2 ≡ mAk mod p.

Show that m ≡ c−a1 c2 mod p, so Alice can recover Bob’s message.

Although we have discussed protocols for finite fields modulo p, we can generalize key exchange
and ElGamal to an arbitrary group G. Many exotic cryptographic methods, e.g. elliptic curve
cryptography, just replace F∗

p with a fancy group, in the hopes the discrete logarithm problem will
be harder to solve. While encrypting is more or less the same, breaking these cryptosystems does

24

https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf

involve new and fancy math!

1.3. One-way functions and trapdoors

Let’s consider DHM more abstractly. We can view powers in a group G as a function

pow : G× Z → G

which can be efficiently computed using modular exponentiation. If we define f(x) = pow(g, x) = gx

as a function of the power alone, the discrete logarithm problem is simply to invert f . (By “invert”,
we mean find a single element of f−1(h).) DHM works because the discrete logarithm problem is
hard for appropriately chosen G, i.e. f is difficult to invert. The best known algorithm for G = F∗

p

is subexponential, but still much faster than any polynomial, as we discuss in Section 2.1.
Functions that are easy to compute but hard to invert are called one-way functions. The

discrete exponential is one example, but all modern cryptography is based on (apparently) one-
way functions of one form or another. I say “apparently” since no one is sure one-way functions
actually exist! It’s easy prove that you can compute something efficiently, but very hard to prove
you cannot compute it efficiently, since you need to somehow consider every possible algorithm.
This is the same problem underlying P vs. NP. In fact, proving the existence of a one-way function
implies that P ̸= NP, so if you find one, you get a million bucks! Internet commerce is one giant
bet that these complexity classes are distinct.

Although DHM is ingenious, it involves two rounds of communication and only computes a
key. Diffie and Hellman [1] observed that constructing a PKC is simple if you have a trap door
function. A trap door function is a special one-way function which can be easily inverted if you
have “trap-door” information. This is like a combination lock, where the combination is the trap-
door information. Suppose Alice publicly advertises her trap door function f but not the trap-door
information. Bob forms his plaintext message m, computes the ciphertext c = f(m), and sends it
to Alice. Alice uses her trap-door information to easily recover m. Eve, on the other hand, is stuck
with the computationally infeasible task of inverting f(k) without the trap-door information.

This sounds great, but trap door functions are much harder than one-way functions! Despite
their efforts, Diffie and Hellman were unable to find a single plausible candidate. Before moving
on, let’s see why discrete logarithms do not provide a trap door.

Exercise 3. Let A ≡ ga mod p be Alice’s public key, as above. Explain why
f(k) = Ak is not a trap door function. Even though she knows a, Alice is no
better off than Eve!

1.4. The Rivest-Shamir-Adleman (RSA) cryptosystem

Enter Ron Rivest, Adi Shamir and Leonard Adleman (RSA), who two years after Diffie and Hell-
man’s famous paper, found the first plausible trap-door function [7]. RSA has a colourful history.
River and Shamir were computer scientists, whose role in the collaboration was to generate wacky
trap-door candidates. Adleman, the mathematician of the trio, would shoot them down. In April
1977, the trio spent Passover evening together, drinking liberal quantities of Manischewitz wine
and parting ways after midnight. After getting home, Rivest couldn’t sleep, and lay awake mulling
the problem. Suddenly, he was struck by inspiration, and wrote the bulk of the paper that very
night! (Once again, poor old Clifford Cocks at GHCQ was “post-scooped”, devising a similar sys-
tem in 1973. His scheme was only declassified in 1997, long after the RSA trio had become rich
and famous.)

25

To understand Rivest’s revelation, let’s reverse the roles of x and g in the discrete logarithm
problem and consider roots of h:

xg ≡ h mod p.

Now the power is known, but not the g-th root x. For a prime p, finding roots is easy.

Exercise 4. Let’s find discrete roots xe ≡ h modulo p, assuming that e and p− 1
are relatively prime.

(a) Show that e is coprime with p− 1 just in case it has a multiplicative inverse
modulo p− 1, ed ≡ 1 mod (p− 1).

(b) Using part (a), conclude that x has the unique solution

x ≡ hd mod p.

Hint. Recall Fermat’s Little Theorem, ap−1 ≡ 1 mod p for any integer a.

This does not sound like a promising approach to a trap-door function. However, now consider
replacing p with a product of distinct primes or semiprime N = pq. To find roots, we need a
generalization of Fermat’s little theorem called Euler’s little theorem.

Exercise 5. Let ℓ = lcm(p−1, q−1) and suppose a is relatively prime to N = pq.
Prove that

aℓ ≡ 1 mod N.

Hint. The integer aℓ − 1 is divisible by both p and q if and only if it is divisible
by pq.

We can now generalize Exercise 4 to roots modulo N = pq.

Exercise 6 (roots modulo a semiprime). Suppose that e is relatively prime
with N ′ = (p− 1)(q − 1).

(a) Show that de ≡ 1 mod N ′.

(b) Suppose h is relatively prime to N . Conclude using Euler’s little theorem
that xe ≡ h modulo N has unique solution

x ≡ hd mod N.

This will form the basis of the RSA trap door function. Suppose Alice chooses large primes p
and q, and computes their product N = pq. She makes N publicly available, as well as the index
e, so the public keys are (N, e). The trap door function is

f(x) = xe mod N,

with trap-door information (private key) either the factors p and q, N ′, or the inverse d. Bob can
choose a plaintext m, compute c = f(m), and send it to Alice. Alice can easily determine m using
Exercise 6. And voila! That’s RSA. We will refer to such a system by the triple (N, e, d).

26

What about security? Eve’s task, if she wishes to learn m, is to solve
me ≡ h mod N

without knowing the trap-door information. This is called the RSA problem, and it is believed to
be hard. The simplest way to solve it is to directly obtain the trap-door information, i.e. factorize
N . It’s possible there is some sneaky way to get m without factorizing N , but no one knows!

First, we’ll discuss brute-force factorization. Since N is a semiprime, all we need to do is find a
single prime factor. If both factors are larger than

√
N , then the product is larger than N , which

is impossible, so the simplest way to proceed is to test primes below
√
N . How many are there? To

estimate, we need a Big Theorem, but like discrete logarithms, our algorithm is still exponential
when N ∼ 2k is a product of two k/2-bit primes.

Exercise 7. The Prime Number Theorem (PNT) is one of the crowning achieve-
ments of 19th century mathematics. Let π(n) be the number of primes less than
or equal to n. The PNT states that, for large n,

π(n) ∼ n

logn.

It was proved independently by Jacques Hadamard and Charles Jean de la Vallée
Poussin in 1896.

(a) Show that, if we select a number randomly between 1 and N , it is prime
with (approximate) probability 1/ logn.

(b) Assume that checking for divisibility costs nothing. Using the PNT, show
that the brute-force approach to factorizing N ∼ 2k is exponential in k, with
time complexity O

(
k−22k/2

)
.

Before finishing the section, we provide a second method called order finding for breaking RSA
which does not yield trap-door information.

Exercise 8. There is another way to break RSA called order finding. Eve finds
me mod N , and knows both e and N since they were publicly announced. Instead
of factoring N , she can determine the order of the element me, i.e. find an index
r such that (me)r = mer ≡ 1 mod N . Let’s see how she can find m.

(a) We can find r such that (me)r = 1 just in case me and N are relatively
prime. If they are not, explain how finding the common factor (which can
be done efficiently using Euclid’s algorithm) breaks RSA.

(b) Using Exercise 5, show that if me and N are relatively prime, r divides N ′.

(c) For the RSA protocol, we assume that e is relatively prime with N ′. Com-
bining this with the previous exercise, conclude that e is relatively prime to
r, and hence there is a multiplicative inverse ed′ ≡ 1 mod r.

(d) Finally, show that (me)d
′ ≡ m mod N .

Eve learns the inverse d′ modulo r, rather than the trap-door inverse d modulo
N ′, but that is enough! The bottleneck here is the problem of order-finding. On a

27

https://en.wikipedia.org/wiki/Prime_number_theorem
https://en.wikipedia.org/wiki/Jacques_Hadamard
https://en.wikipedia.org/wiki/Charles_Jean_de_la_Vall%C3%A9e_Poussin
https://en.wikipedia.org/wiki/Charles_Jean_de_la_Vall%C3%A9e_Poussin

classical computer, the naive algorithm is simple to go through the possible orders
and see if they give 1. This is linear in N , and hence exponential in the number
of bits k for p, q ∼ 2k/2. This is the best classical algorithm we know!

2. Breaking the internet
We have learned how to make a PKC. We will now discuss how to break a PKC with a classical
computer. Rather than discussing the mathematical details, we will simply present the resource
scaling and consider the real-world implications. If we compromise DHM or RSA, what else goes
wrong?

2.1. Transport Layer Security

PKCs play an important role in the cryptographic architecture of the internet. A central example
is digital signatures. Suppose Bob is an internet user wanting to communicate securely with a
server Alice, e.g. to send credit card details. These transmissions should of course be encrypted to
prevent Eve from stealing the data. But Alice and Bob should check that the messages are coming
from the right people! A scheme for authenticating the identity of communicating parties is called
a digital signature.

RSA provides a simple example. Suppose that Bob and Alice use an RSA system with public
parameters (N, e) and private key d (de ≡ 1 modulo N ′) in Alice’s possession. Bob wishes to check
that Alice is who she says she is. Alice sends a plaintext message m (which in itself contains no
sensitive information) along with the signature σ ≡ md modulo N . Bob knows e, and can simply
check that σe ≡ m. Problem solved? Not exactly. If Eve has enough control over the channel Alice
and Bob are using, she can pose as Alice and set up an (N, e, d) of her choice. She can, of course,
easily authenticate that she was the one who chose N ! This is called the man-in-the-middle attack.

To guard against these attacks, Alice and Bob must have recourse to a trusted third party: Vera.
Vera is a publicly known authority who can somehow verify the identity of Alice and sign things
for her. This is implemented using a protocol called Transport Layer Security (TLS). Without
entering into the details, it loosely works as follows. Rather than appending her own signature to
a nonce message, Alice sends a certificate signing request to Vera. Vera magically verifies Alice is
not Eve, and signs the TLS certificate. Bob checks the certificate comes from Vera (who has her
own digital signature), and inside, finds Alice’s public key. Of course, Eve can try posing as Vera,
but it will typically be much harder to fake being a trusted public authority than a private Alice or
Bob in the all-to-all chaos of internet traffic! (Note that, when browsing, you can wrap everything
in a TLS layer by appending “s” to “http”.)

Exercise 9 (fake IDs). Consider ways that Eve could trick Bob into communi-
cating with her, using legitimate TLS certificates.

2.2. Breaking public key cryptosystems classically

RSA gives a simple trapdoor function and hence an elegant digital signature scheme. For this reason,
it remains the most popular method for providing TLS certificates. As a result, the security of
RSA does indeed have major implications for internet security in general. We gave some naive

28

algorithms for breaking RSA above, but the best classical algorithms make clever use of number
sieves. We won’t go into the details, but the general number sieve algorithm scales as

O
(
e1.9(logN)1/3(log logN)2/3

)
.

Currently, RSA Security recommends a key size of k = 2048 bits, i.e. N ∼ 22048. Let’s see why!

Exercise 10. The Folding@home distributed computing network commands a
flabbergasting 2.3 exaFLOPS, meaning it can perform 2.3 × 1018 floating-point
operations per second. Let’s suppose the network devotes itself to using number
seive methods to factorize large numbers.

(a) Estimate how long it would take Folding@home to factorize: (i) a 512-bit
key, N ∼ 2512; (ii) a 1024-bit key; (ii) a 2048-bit key.

(b) Moore’s law predicts that computing power doubles every 1.5 years. Roughly
how long do you expect k = 2048 to remain secure?

While ubiquitous in digital certificates, RSA is almost never used for the subsequent secure
communication. Creating a new RSA cryptosystem for each communication is too expensive, but if
Alice and Bob reuse their system, and the private keys are subsequently compromised, then all prior
communications are compromised. Clearly, for each secure exchange, we should generate unique
keys once identities have been authenticated. Such a system will then possess forward secrecy.

This is where DHM key exchange (and its elliptic curve cousin) gets used in practice. After
Vera certifies Alice and Bob, they generate a shared key, and use that as input for one of the many
symmetric encryption methods (usually some flavour of AES). Since a new key is generated for
each exchange, the system, called Diffie-Hellman ephemeral or DHE, is in principle forward secret
provided the keys used are large and chosen independently for each exchange. But in practice,
keys are often reused, and solving the discrete logarithm problem for specific prime moduli p can
compromise large parts of the internet [6]. Many SSH, VPN and mail servers, as well as the majority
of websites, use fixed-group DHE. Among other recommendations, [6] suggests using larger primes,
e.g. 2048 bits, and moving from standard DHM to the elliptic curve variant, which is not susceptible
to number sieve methods.

The state-of-the-art classical algorithm for solving the arbitrary discrete logarithms in F∗
p also

uses number sieves, with a scaling similar to factorization:

O
(
e1.9(log p)1/3(log log p)2/3

)
Since the discrete logarithm case is simpler, we will sketch the related (not quite state-of-the-art)
index calculus algorithm. For more details, see [4].

Exercise 11. Let p be prime and g a primitive root of F∗
p. We will pick a value L

and for all primes ℓ ≤ L, compute logg ℓ mod p. This will let us solve the discrete
logarithm problem for arbitrary group elements!

(a) Suppose we have computed these values, and want to find logg h for some
h ∈ F∗

p. Consider the quantities

h · g−n mod p,

29

https://foldingathome.org/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

where n = 1, 2, Increment n until h · g−n has no prime factors greater
than L. Show that

h · g−n =
∏
ℓ≤L

ℓjℓ =⇒ logg h = n+
∑
ℓ≤L

jℓ logg ℓ.

This step of the process is much faster than computing logg ℓ, so we turn to
this bottleneck next!

(b) To compute the small prime logarithms, logg ℓ, randomly generate a set of
indices i, compute gi, and factorize. If gi contains prime factors larger than
L, discard it, but otherwise it can be expressed

gi =
∏
ℓ≤L

ℓrℓ(i) =⇒ i =
∑
ℓ≤L

rℓ(i) logg ℓ.

Sketch how you can obtain the small prime logarithms logg ℓ once we have
π(L) such numbers, where π(x) is the number of primes less than or equal
to x.

(c) Numbers with no prime factor above L are called L-smooth. To determine
the running time of the index calculus method, we need to determine how
long it takes to find π(L) L-smooth numbers using the randomly chosen gi.
Explain qualitatively how it might be possible that the number of draws
required is approximately independent of L.

(d) As suggested in the previous question, for an arbitrary N , the number of
draws required to produce π(L) L-smooth powers gi mod p is

O
(
e
√
2 ln p ln ln p

)
,

independent of L. Deduce that this algorithm for the discrete logarithm
problem has complexity O

(
e
√
2 ln p ln ln p

)
, and show that this is slower than

the state-of-the-art number sieve method.

2.3. Quantum quandaries

We have seen that, in order to safeguard PKCs and hence the internet from powerful classical
computers, we simply need to increase key size. For the time being, k = 2048 bits for both RSA
and DHM seems reasonable, though key size needs to keep pace with Moore’s law and should
increase in future. But quantum computers change things rather dramatically. In comparison to
the near-exponential number sieve methods, Shor’s algorithm can factor N = pq in

O
(
log3N

)
steps. This is shockingly fast. In fact, this scales the same way as operations with the private key!
Similarly, we can solve the discrete logarithm problem for F∗

p in O(log2 p) steps.
But there are some subtleties lurking behind this simple scaling. First, the constants sitting

out the front are large. Second, in order to successfully run the algorithm, the quantum computer
needs to be noise-tolerant. Finally, size matters: it takes ∼ 2 logN qubits to store the number N
and run the order-finding part of the algorithm. Thus, we need to build a fault-tolerant quantum

30

computer with around 4000 logical qubits before we can break RSA or DHM with 2048-bit keys.
See [11] for more on these practical considerations. But whenever it happens, the current TLS
architecture will need to change when large-scale quantum computers arrive.

Exercise 12. In [11], Gidney and Ekerå propose that 20 million noisy qubits
should be sufficient to solve RSA-2048 in 8 hours. Moore’s law appears to apply
to qubits as well, with processor size doubling every 1.5 years. The next few years
should see the advent of noisy intermediate-scale quantum computing (NISQ),
with 50–100 qubits.

(a) Assuming Moore’s law holds, how long until we reach Gidney and Ekerå’s
threshold?

(b) Explain why scaling up the RSA key size will be impractical once large-
scale quantum computers arrive. For instance, if private key operations take
a millisecond for RSA-2048, and it takes 8 hours to break, what happens
when we choose a key that takes 100 years to solve? Assume the asymptotic
constants don’t change.

Not only are RSA and standard DHE efficiently solvable by a quantum computer, but the elliptic
curve variant as well. (Recall that Shor’s algorithm generalizes to solving the hidden subgroup
problem for abelian groups.) An immediate question, then, is how to protect internet security once
large-scale quantum computing becomes a reality.

Exercise 13. Here is a little post-quantum tapas.

(a) Look up the multi-prime variant of RSA, where N = pq is replaced by a
product of three or more primes. How does it work? Is it secure against
quantum computers?

(b) Research the post-quantum TLS ciphersuite. How does it achieve digital
authentication and forward-secrecy? Is anyone using it? What are the per-
formance tradeoffs, and are these likely to have any side effects?

(c) Quantum key distribution (QKD) is often touted as the quantum solution to
the quantum problems posed by Shor’s algorithm. Is it likely to be useful
for internet security? If not, where is it likely to be useful?

The march of technology is exciting to watch from afar, and even more exciting to be part of.
But it is worth pausing to consider the broader implications of the fun we are are having.

Exercise 14. In a blog post from 2019, Scott Aaronson dismisses concerns that
quantum computing is an arms race. But is this too quick? Aaronson comments
that “the morality. . . could strongly depend on whether the codebreakers are work-
ing for the good guys or the bad guys”. Let’s expand on this!

(a) With specific reference to quantum computing and internet security, explain
how who has what technology when, and how they use it, can have major
geopolitical implications. You may want to consider historical examples (e.g.

31

https://quantumcomputingreport.com/moores-law-for-qubits-revisited/
https://www.scottaaronson.com/blog/?p=4405

poor old Clifford Cocks, Bletchley Park, the Manhattan Project, etc).

(b) If you were a quantum computing researcher on the verge of a scalability
breakthrough, what would be the most reponsible course of action? Should
you talk to Verisign (real-world Vera) before publishing? The government?
Post it on Reddit? What would it depend on? Think carefully about the
likely impact.

(c) Imagine you are a policy advisor for the Canadian government. How would
you advise them to proceed?

(d) Aaronson points out that large-scale quantum computing is likely to have
many benefits, to materials science, medicine, and perhaps even climate
change. But who benefits? Comment on social and economic factors which
could determine this. It may be helpful to first answer this question for
classical computers or the internet.

References
1. New directions in cryptography (1976), Whitfield Diffie and Martin Hellman.
2. Secure communications over insecure channels (1978), Ralph Merkle.
3. The possibility of secure non-secret digital encryption (1970), J. H. Ellis.
4. An Introduction to mathematical cryptography (2008), Jeffrey Hoffstein, Jill Pipher, Joseph

H. Silverman.
5. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms (1985),

Tahar ElGamal.
6. Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice (2015), David Adrian et al.
7. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems (1978), R.L.

Rivest, A. Shamir, and L. Adleman.
8. Quantum algorithms for computing general discrete logarithms and orders with tradeoffs

(2020), Martin Ekerå.
9. Understanding SSL/TLS (2008), J. K. Harris.

10. The state of factoring algorithms and other cryptanalytic threats to RSA (2013), Daniel J.
Bernstein, Nadia Heninger, and Tanja Lange.

11. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits (2019), Craig
Gidney and Martin Ekerå.

12. The Impact of Quantum Computing on Present Cryptography (2018), Vasileios Mavroeidis,
Kamer Vishi, Mateusz D. Zych, and Audun Jøsang.

32

https://web.archive.org/web/20141129035850/https://ee.stanford.edu/~hellman/publications/24.pdf
https://dl.acm.org/doi/10.1145/359460.359473
https://cryptocellar.org/cesg/possnse.pdf
https://www.math.brown.edu/~jhs/MathCryptoHome.html
https://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B02.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://eprint.iacr.org/2018/797.pdf
https://computing.ece.vt.edu/~jkh/Understanding_SSL_TLS.pdf
https://cr.yp.to/talks/2013.01.07/slides.pdf
https://arxiv.org/pdf/1905.09749.pdf
https://arxiv.org/pdf/1804.00200.pdf

