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−1−
Curry’s Paradox

We start with a simple identity due to philosopher Charles Peirce (1839–1914). An odd
consequence is Curry’s paradox, discovered by logician Haskell Curry (1900–1982). Like
Russell’s paradox (discussed in lectures), the paradox arises when we allow self-reference.

1. Show that Peirce’s law,
((p =⇒ q) =⇒ p) =⇒ p

is a tautology via truth tables.

2. Suppose that (p =⇒ q)⇐⇒ p is true. Use part (a) and modus ponens to deduce q.

3. Argue informally that, for any proposition q, the self-referential sentence

p = “If p is true, then it implies q”

satisfies (p =⇒ q)⇐⇒ p.

4. Combine (b) and (c) to conclude that anything is true. What has gone wrong here?

−2−
The Terrible Dynasties

Sets A and B are said to have the same cardinality if there exists a bijection (one-to-one,
onto function) f : A→ B. Cardinality lets us think about the size of infinite sets.

1. For an infinite set X, consider a map f : X → P(X). Show that f cannot be onto
by considering the subset R = {x ∈ X : x /∈ f(x)}. This means that sets are always
“smaller” than their power sets. This result was proved by the founder of set theory,
Georg Cantor (1845–1918). Hint: This is very similar to Russell’s paradox.

2. Let ℵ0 denote |N|, the cardinality of the natural numbers. We call any cardinal of an
infinite set an infinite cardinal ; if you like, it is a “type of infinity”. Let

ℵn+1 ≡ |P(An)|,

where An is a set with cardinality ℵn. Using part (a), argue that there is a tower of
ever-bigger infinite cardinals

ℵ0,ℵ1,ℵ2, . . .
In other words, there is an infinite number of different infinities!
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−3−
Models and Non-implication

Suppose that we have a binary operation ⊗ (“bizarro” multiplication), which enjoys some
combination of the following properties:

x⊗ (y ⊗ z) = (x⊗ y)⊗ z (A)

x⊗ x = x (B)

(x⊗ y)⊗ z = x⊗ z. (C)

If we want to show that some mathematical statements A1, A2, . . . , An (such as axioms) do
not imply some other statement B, we need only find a single model of the situation where
A1, A2, . . . , An are true but B is false. Truth tables are a special case of this, where we show
a statement is not a tautology by finding a single assignment of truth values (a “model”)
which makes it false.

1. Show that if x⊗ y = max(x, y), then ⊗ satisfies (A) and (B) but not (C).

2. Find a binary operator which which satisfies (A) and (C) but not (B).

−4−
Zippers and Hypercubes

Consider a real number in the unit interval, x ∈ [0, 1]. We can expand x as an infinite
decimal

x = 0.d1d2d3 . . . , di ∈ {0, 1, . . . , 9}.
Thus, a real number between 0 and 1 can be represented as an infinite sequence of digits.

1. Are these digit sequence representations unique? If not, can we adopt conventions to
make them unique?

2. Find a procedure to “smush” two digit sequences together to form a third sequence.
Your procedure should be reversible, that is, you should be able to “un-smush” a digit
sequence to uniquely recover the two digit sequences which were smushed to make it.

3. Use your answer to (b) to find a correspondence between the unit interval [0, 1] and
the unit square [0, 1]2 = [0, 1]× [0, 1].

4. Extend the procedure from (b) to n digit sequences, and therefore deduce a correspon-
dence between the unit interval [0, 1] and the n-cube

[0, 1]n =

n times︷ ︸︸ ︷
[0, 1]× · · · × [0, 1] .

Remarkably, this shows that the unit interval is the same size (in the sense of set
theory) as the unit hypercube in n dimensions!
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−5−
Taming the Tails

A summation machine is an operator S which takes a sequence of real numbers and either
(a) produces out a real number, or (b) gives up. We write the result of applying the machine
to a sequence {a1, a2, a3, . . .} as

S

[
∞∑
n=1

an

]
.

In the first case, we interpret the number it spits out as the result of adding all the numbers
up, and say the series

∑
n an converges according to S. In the second, we say the series is

divergent according to that procedure. In order to get a sensible addition operator S, we
impose two additional contraints:

S

[
∞∑
n=1

an

]
= a1 + S

[
∞∑
n=2

an

]
(additivity)

S

[
α
∞∑
n=1

an + β
∞∑
n=1

bn

]
= αS

[
∞∑
n=1

an

]
+ βS

[
∞∑
n=1

bn

]
. (linearity)

1. Using additivity and linearity, show that if the following series converge according to
S, they must take specific values:

(a) Grandi’s series:

S[1− 1 + 1− 1 + · · · ] = S

[
∞∑
n=0

(−1)n

]
=

1

2
.

(b) Alternating natural numbers:

S[1− 2 + 3− 4 + · · · ] = S

[
∞∑
n=1

(−1)nn

]
=

1

4
.

Hint: Use (a) and additivity.

(c) Natural numbers:

S[1 + 2 + 3 + 4 + · · · ] = S

[
∞∑
n=1

n

]
= − 1

12
.

Hint: Use (b), linearity, and L− 4L = −3L, where L is the limit.

2. The Cesàro sum (Ernesto Cesàro, 1859–1906) is the limit of the average of the first
N partial sums:

C

[
∞∑
n=1

an

]
= lim

N→∞

1

N

N∑
k=1

n∑
n=1

an =
1

N

N∑
k=1

Sk.

Check this is a summation machine, and verify that Grandi’s series converges.
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−6−
Simple Polylogarithms

We will investigate the series

am(n) =
∞∑
k=1

kn

mk
.

1. Show using an appropriate test that am(n) converges for any n ∈ N∪{0} and |m| > 1.

2. What is am(0)? Your answer will depend on m.

3. Show that

am(n) =
1

m
+
∞∑
k=1

(k + 1)n

mk+1
=

1

m

[
1 +

∞∑
k=1

(k + 1)n

mk

]
.

4. Recall the binomial theorem

(k + 1)n =
n∑
j=0

(
n

j

)
kj.

Using this identity, prove that

am(n) =
1

m− 1

[
1 +

n−1∑
j=0

(
n

j

)
am(j)

]
.

Hint: You are allowed to swap the order of an infinite summation
∑∞

k=1 and a finite
summation

∑n
j=0.

5. We can calculate am(0) using the results of (2). Using the identity in part (4), we
can iteratively calculate any am(n) we like! Put theory into practice, and explicitly
evaluate the following series:

∞∑
k=1

1

2k
,

∞∑
k=1

k

2k
,

∞∑
k=1

k2

2k
,

∞∑
k=1

k3

2k
.
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−7−
Pi Makers

Power series and Taylor’s theorem give us powerful methods for representing functions and
constants. For instance, using the Taylor series for the tangent function (and Abel’s theorem
since we evaluated at an endpoint), we found that

π

4
=

1

1
− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n

2n+ 1
+ · · ·

In this problem, we prove a curious infinite product identity for π.

1. For n = 0, 1, 2, . . ., let

I(n) =

∫ π

0

dx sinn(x).

Show that I(0) = π and I(1) = 2. Using sin2 x+ cos2 x = 1, and integration by parts,
deduce that for n ≥ 2,

I(n) =
n− 1

n
I(n− 2).

2. Use induction and (1) to prove that

I(2n) = π
n∏
k=1

2k − 1

2k
, I(2n+ 1) = 2

n∏
k=1

2k

2k + 1
.

3. By comparing integrands, show that I(2n + 1) ≤ I(2n) ≤ I(2n − 1). Divide through
by I(2n+ 1) and use (1),

lim
n→∞

I(2n)

I(2n+ 1)
= 1.

4. Rewriting the limit in (3), obtain the final result:

π

2
= lim

n→∞

n∏
k=1

(
2k

2k − 1
· 2k

2k + 1

)
=

(
2

1
· 2

3

)(
4

3
· 4

5

)(
6

5
· 6

7

)
· · ·
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−8−
Fourier from Power Series

Adding negative powers x−n to a power series yields what is called a Laurent series. These
converge on an annulus rather than a disc. Laurent series are important in complex analysis,
where instead of real x, we have a function F of a complex variable z ∈ C:

F (z) =
∑
k∈Z

akz
k.

We can use these to derive Fourier series.

1. We can restrict z to the unit circle in C via z = eiθ. Let f(θ) = F
(
eiθ
)
. Argue that

the function f is periodic with period 2π, and give a Laurent series for f(θ).

2. Integrate f(θ)e−i`θ for ` ∈ Z, θ ∈ [0, 2π). Use this to give an integral expression for ak
in terms of f(θ).

Hint: You may interchange integration and summation.

3. Suppose that f(θ) is real. Using Euler’s formula eiθ = cos θ + i sin θ, and writing
ak = bk + ick, show that

f(θ) =
1

2
B0 +

∞∑
n=1

Bn cos(nθ) + Cn sin(nθ),

where Bn = 1
2
(bn + b−n) and Cn = 1

2
(c−n − cn).

4. Convert your answer from (2) into an integral for Bn and Cn in terms of f(θ).

To complete our derivation, we still need to prove that a) any periodic real function f has
a suitable F , and b) that F has a Laurent series which converges on the unit circle in C.
Unfortunately, you will have to wait until your complex analysis course!
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−9−
The Basel Problem

The Basel problem, first posed in 1644, is the challenge of summing up all the reciprocal
squares:

∞∑
k=1

1

k2
=

1

12
+

1

22
+

1

32
+ · · ·

The first person to solve it was Leonhard Euler (1707–1783). Here, you will get a chance
to explore his beautiful if non-rigorous method.

First, recall that we can write a finite polynomial p(x) as a product of its roots {a1, a2, . . . , an}:

p(x) = C(x− a1)(x− a2) · · · (x− an) = C
n∏
i=1

(x− ai).

The constant C is the coefficient of its leading term, Cxn. Similarly, we can try to write
sin(x) as a product of terms corresponding to its zeros at πk ∈ Z:

sin(x) = C
∏
k∈Z

(x− πk) = Cx
∏
k≥1

(x− πk)(x+ πk) = Cx
∏
k≥1

(x2 − π2k2). (1)

We see immediately that there is a problem with this expression: the terms blow up as
k →∞ for any fixed x! Let’s try to diagnose it a little more carefully.

1. Take the log of both sides of (1), and apply the divergence test to the RHS. When does
the series converge?

2. We can fix the problem in (1) by replacing the factors:

x2 − π2k2 → f(x)[x2 − π2k2],

where f(x) is a function with no zeros. Using the divergence test again, argue that
f(x) = 1/x2. For some new constant C ′, our heuristic factorisation becomes

sin(x) = C ′x
∏
k≥1

(
1− x2

π2k2

)
. (2)

3. Divide both sides of (2) by x. Take the limit x → 1, and use L’Hôpital’s Rule (or
standard limits) for the LHS, to argue that C ′ = 1.

4. Euler’s ingenious trick was to Taylor expand both sides of (2),

sin(x) = x
∏
k≥1

(
1− x2

π2k2

)
=
∑
k≥0

ckx
k, (3)

and identify the coefficients of x2.
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(a) Explain why c2 = −1/6. Hint : Taylor series.

(b) Prove using induction that

n∏
k=1

(1− akx) = 1− x
n∑
k=1

ak +O(x2). (4)

(c) Ignoring the question of convergence, take n→∞ in the previous question, apply
to (3), and by identifying Taylor coefficients, deduce that

∞∑
k=1

1

k2
=
π2

6
.

5. Bonus. We can perform a similar trick for higher powers.

(a) Define the formal power series∏
k≥1

(1 + akx) =
∑
n≥0

Anx
n. (5)

Clearly, A0 = 1, and you proved that

A1 =
∑
k≥1

ak.

Prove that
An =

∑
k1<k2<···<kn

ak1ak2 · · · akn . (6)

(b) Define

A(p)
n =

∑
k1<k2<···<kn

(ak1ak2 · · · akn)p. (7)

Show that

A2 =
1

2
(A2

1 − A
(2)
1 ).

(c) Identifying c4 in the sine Taylor series and product expansion of (3), use the
previous result to show that

∞∑
k=1

1

k4
=
π4

90
.
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