Quantum polygons and the Fourier transform

David Wakeham[]
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 171, Canada
(Dated: September 18, 2020)

The Hilbert space Hq ~ C? of a qudit is impossible to directly visualize for d > 2. Here, we
explore a shortcut which turns vectors into polygons in the complex plane. This suggests a basis of
regular polygons, for which the active change of basis is the quantum Fourier transform (QFT). We

give an intuitive, visual approach to the QFT, in particular when d = a*

INTRODUCTION

The Hilbert space Hq ~ C? of a qudit is impossible
to directly visualize for d > 2. There are many indirect
methods for visualizing higher dimensions [4]. Here, we
will represent vectors as polygons in the complex plane,
following [3], and give visual representations for various
basic operation in the natural basis of regular polygons.

Consider a vector v = (v;) € C%, for k € [d], where
[d] := {0,...,d — 1}. Viewing the vector as a map ¥ :
[d] — C suggests we place vertices at points v, € C and
label with k. A less visually cluttered approach is to
draw directed edges vy — vi+1 and indicate vy, e.g. with
a white vertex. Then a vector # € C? can be pictured as
a polygon of d sides with a distinguished vertex (Fig. .
We call this the polygonal representation.

U

Ii Uy

FIG. 1: A vector ¥ € C? represented as a triangle in C.

For a state 1)) € Hgq, we choose some basis |k), k €
[d], to canonically identify Hq with C¢. For coefficients
[Y) =: >, anlk), 1) = (au) is a (normalized) map we
can represent as a d-gon. Note that the phase ambiguity
for a single qudit means that polygons for states form an
equivalence class under rotations around the origin.

REGULAR POLYGONS

The standard basis vectors gk are useful for linear alge-
bra, but ill-suited to the polygonal representation. This
suggests we seek a new basis. The most natural choice
is the set of regular polygons centred around the origin.
These will be maps of the form yj; = w®xo for some phase
|w| =1 and constant xo # 0.

The phase w describes the angular difference between
successive points. Since a regular polygon has the same
angular difference (from the cetnre) for all points, this

is a perfect power.

relation also holds for the first and last component, and
we immediately have w? = 1. We can always rotate and
rescale a polygon, i.e. multiply by some complex z € C,
so that xo = 1. Define the primitive dth root of unity
wq == €2>™/% Our two conditions, w? = 1 and yo = 1,
suggest we consider the regular polygons

Xa = (wi) . (1)

Convex regular polygons will only occur for values of s =
1 and s =d — 1, as in Fig. 2] Stellated regular polygons
occur for 1 < s < d—1 coprime with d, i.e. ged(d, s) = 1.

FIG. 2: The polygonal basis for C3.

This gives at most d — 1 polygons, not enough to form
a basis for C¢. To get d vectors, we simply take s € [d].
This will include a “trivial” polygon for s = 0, repre-
sented by the thick white circle in Fig. [2] But in general,
for composite d, it will include wrapped polygons when
s and d share a common factor. We call this the set of
regular polygons. We show some examples in Fig.

FIG. 3: A stellation ¥? and a wrapped polygon Y2.

Let (s,d) be the greatest common divisor of s and d,
and define {s,d} := d/(s,d). Then X3 is a polygon of
{s,d} sides, which wraps the unit circle g times, called a
polygram in the mathematics literature, and denoted by
Coxeter-Schlafi symbol (s, d){d/s} [2].This has an imme-
diate number-theoretic consequence. The count of s € [d]
relatively prime to d is given by Fuler’s totient function
¢(d). Similarly, ¢(d/f) counts s for which (d,s) = f,

since (d,s) = f just in case (d/f,s) = 1. Thus, ¢(d/f)
counts the polygons wrapping f times. Since d/f = f is
just another way of enumerating factors of d, and every
polygon must wrap f times for some factor f, we find

that
S o(f) = d. (2)

fld

This identity was first proved by Gauss.

LINKAGES

We have yet to prove that the regular polygons form a
basis. A direct if clumsy method is to form a d x d matrix
from the vectors x’, and compute the determinant.[6] A
nicer method is to compute the inner product and show
the regular polygons are orthogonal, and since we have d
of them, form a basis.

Using the geometric series Y, 7F = (1 —r)~1(1 — r?)
for r # 1, we have
d— _ o (s—t)d
WOk l1-w _
(Xa» X3) kz Tl oG 0 (3)

for s # t, using w(s B4 _ 1. For s = t, each term is 1, so
the inner product is d. Hence,

(Xa» Xa) = dds,s - (4)

We can also see this by geometrizing the inner prod-
uct using linkages. The linkage associated with a vec-
tor ¥ is the sequence of points L(¥) := (VF), where
VE .= Z =0 Vj- Geometrically, this simply arranges the
complex numbers v top to tail. We show example in
Figs. 4] and |5 colouring the numbers vy, (considered as
vectors from the origin) to distinguish them from the
edges in the polygonal representation.

Note that the linkage for a regular polygon closes (Fig.
4), starting and ending at the origin, unless we have the
trivial linkage for which V;, = k. The argument is sim-
ple: the linkage is geometrically similar to the original
polygon, since the vectors v, comprising the linkage, and
Vp+1 — Ui comprising the polygon, have a fixed complex
ratio (i.e. fixed scaling and rotation) w — 1.

' =

FIG. 4: The stellation Y2 and associated linkage L(X%).

Let us return to the question of orthogonality. The in-
ner product (\%, %) is the last component in the linkage

L(xX5™ %). Since)Zf[t is a regular polygon, it closes unless
s =t. If s = t, then the linkage is simply a chain of length
d, and hence we rediscover (X%, ¥5) = dds+ geometrically.
We can view inner products with a polygon as “me-
chanically” uncurling a linkage. Left-multiplying a vec-
tor @ by ()T leaves the first chain in the linkage, Vo,
alone. But it rotates V!, V2, . V"l_1 by of Then
it rotates V2, V3, ... Vi~ 1 by wd , and so on, and ulti-
mately, V¥ — Vk tk We give an example in Fig. l
unzipping a linkage L(0) with the triangle ¥3. The most
general vector « for which (@, ¥) can be interpreted as a
hinged motion of L(?) is @ = (wy), for phases |wg| = 1.

FIG. 5: A vector ¥, with linkage L(%), unzipped by 3.
The blue line is the coefficient d=1({ 3, 7).

Since the)% form an orthogonal basis, the results of
uncurling a linkage L(?) give coefficients for an expansion
of ¥ in regular polygons. Similarly, we can consider states
|Y) =", ai|k) € Hq. Our basis of polygonal vectors can
be made into an orthonormal basis of polygonal states,
IX5) := ¥5/V/d. Then, in this new basis,

= ZA5|XZ>ﬂ As = \[Zwiks (5)

This is the discrete Fourier transform (DFT). It is a pas-
sive transformation in the sense that it leaves [¢)) alone
but implements a basis change.

In a quantum computer, we cannot change the mea-
surement basis, but actively change the state. Define the
quantum Fourier transform (QF T) as the map

delk (6)

and extending by linearity to any |¢) = > asls). The
coefficients in the computational basis after this active
transformation will be precisely the Fourier-transformed
coefficients A;. We will discuss this operation in more
detail below.

We can define a “generalized” polygon \% = (wh®),
for x € [0,d). As argued above, the associated linkage
closes if and only if x is an integer. But how close is it to
closing for arbitrary 7 We can check explicitly. Using
the geometric series from , for x # 0 the tip of the
linkage lies at

Is) = QFTyls) = [xq) =

17(,udz
Zw = (7)

1—wj

Using Euler’s formula e?® = cos() +isin(f) and the dou-
ble angle formula 1 — cos(f) = 2sin?(0/2) distance from
the origin is

‘ 1 —wie _ ‘ 1 — cos(27x))? + sin® (27x) Yz
1—w? (1 — cos(27mx/d))? + sin?(27x/d)

| sin(mz)

 |sin(rz/d)| ®

This can be used to bound the coefficients in the QFT,
and a related procedure called phase estimation [1], but
we will not discuss this further here.

TENSOR PRODUCTS

Things become more interesting when the Hilbert
space factorizes. Assume that d = ab, so that Hy ~
H, ® Hp. To canonically identify these spaces, we define
|k) ~ |m) & |n), for m € [a], n € [b], and

|k(m,n)) = |na+m) =~ |m) @ |n) . (9)

This corresponds to arranging the d = ab points in a
rectangular array of height b and width a, with points
labeled by (n,m).

Let us consider a regular polygon X3, and see how it
factorizes across H, ® Hp. The kth component is

wé:s _ e27ris(na+m)/ab _ w‘slm/bwgn) (10)

This implies x5 = ;zf/b ® X3 The second factor is a
regular b-gon we call the principal subgon, while the first
factor is a copygon, consisting of a points in a regular
polygon of {d, s} sides. It serves to make a copies offset
by ccw angles A¢ = 27s/d, starting with the first copy
at ¢ = 0. The labelling @[) instructs us to iterate across
the a copies of the b-gon, or arrange numbers into a b X a
matrix and reading every sth entry.

We illustrate in Fig. [6] displaying two factorizations
of a hexagon, Y§ ~)‘{é/g ® Y3 (two triangles) and Y§ =~
)_(%/ ’® X3 (three digons). The white vertices represent
the copygon, and form the first vertex of each subgon.

For multiple factors, the procedure iterates, with
Xope ™)Z’Z/bc@))zz/c@ﬁ and so on. We first factor out the
principal subgon, then iteratively factor the copygons.
We indicate the possibilities for i, in Fig. Dashed
lines are used to indicate a second level of nesting, and as-
sociated arrays are shown. Thus, tensor products induce
a pleasing correspondence between integer factorizations,
multi-dimensional arrays, and polygons.

1 o
9
w” (r)5

(,!)’L w’

2

1 o' o?
3 4 5
o ot o

FIG. 6: Two tensor decompositions of Y.

H H HH LTI

2x6 3x4 4x3 6x2

3Ix2x%x2

2%x2x%x3 2x3%x2

FIG. 7: The non-trivial factorizations of y1,.

PERFECT POWERS

For a power d = a*, the labelling (Eb extends to an
expansion in base a. For n = (ny) € [a]*,

A—1
k(n) :=ng +ang +a’*ng +--- = Z nea® (11)
£=0

The array is a hypercube of A dimensions, latticized so
that it has a points per side, and as above, entries in X3
process this array in steps of size s. The points are la-
belled with the base d expansion of the angle ¢ € [0, 27),
since ¢(n) = 27k(n)/d.

We illustrate for binary powers in Fig. The array
is a hypercube of 2* points labelled by binary strings.
In turn, these strings give the expansion in binary for
anglular coordinates of points on the corresponding 2*-

gon. In Fig. [8] we show to build the hypercube using a

.- _,\9/2>‘7 1
decomposition Y,

simply copying digon, and a principal sub-

>~ Xoxn @ Xaa—1, S0 that we have a
22~ 1_gon. We

can orthogonally copy an array, or copy the polygon with
a twist. Similarly, we can build up polygons for d = a* by
starting with an a-gon, and iteratively making a copies
which are fan uniformly around the circle.

0 011 010

I 00__ 01 000
I:I 111

1 101 1017 100

FIG. 8: Iteratively building a hypercube and 2*-gon
from digons. Binary sequences label angles.

We can also completely factorize a polygon:

osa~ (A1

—, —ga L —,

Xor = Xa ®- QX" OX- (12)
Each terms corresponds to a place value in the base a
expansion, with terms decreasing in significance as we go
left to right. The binary case is illustrated in Fig. [0}

00
ocee Ooe
@0 [eee]
eCe

eoe
@0

FIG. 9: Completely factorizing an octagon into digons.
Digons correspond to bits.

A VISUAL QFT

Equation captures the required sequence of oper-
ations needed to form X3}, and hence implement the QFT
on a quantum computer. We start by building the initial

asa— (A1) : .
copygon X , and then expanding the points on the
unit circle by a factor of a, a total of A — 1 times. We
call X% — X% expansion. If we can record the outcome
of each expansion, we can take the tensor product and
obtain X3, according to .

We picture this for s = 20, d = 32, in Fig. In base
3 (used implicitly in this example), we have s = 202, so
our first step is to construct y%°?. Expanding once gives
X532, and again gives 2. The tensor product of these
three vectors (not pictured) gives ng’.

If we want to implement the QFT on a quantum com-

puter, we are only permitted to use unitary operations.

=\

FIG. 10: Performing the QFT for s = 20,d = 33. Points
have their arguments tripled mod 27 at each step.

Expansion is not unitary, in fact not linear, since
or kx a—1)kx kx
Xa_zwa |k>’_>zw((1) T We |k>

k k

acts on basis vectors in a way that depends on z. But
once z is fixed, it acts via the matrix

E® = diag(wk*(@=1)) (13)

This is unitary since it has pure phases along the di-
agonal. Similarly, the map which constructs the initial
copygon, defined by

Ci70) = [xi) = diag(wg®) 0 QFT,[0) , (14)

is unitary, since it composes a unitary matrix with the
QFT, which is unitary.

The no cloning theorem [8] forbids us from recording
the intermediate copygons as we go along. But we need
these intermediate results to perform the tensor product
(12). Thus, to implement the QFT on a quantum com-
puter, we need to compute the factors separately, running
A parallel calculations. This is easily achieved using the

operators in and :
B BN EPCP0) =) . (15)

a

Setting = sa~ 1) yields the factors in for j =
0,...,A—1. Since we have j 4+ 1 operations in , the
total number of operations required is

1
L4244+ A= 2AA+1). (16)

Thus, the total number of operations required in O(\?).

A final issue is that is using the digits s classically,
but we need a genuine linear map on Hg in order to
take the QFT of an arbitrary state in O(A\?) steps This
can be done using controlled versions of E&“, C’((f). The
details are beyond our scope, but see [5] for more.[7] We
can generalize this picture of the QFT to an arbitrary
composite d = agay ---ay_1, though it is less intuitive
because the number of points in the factors will change.

ACKNOWLEDGMENTS

I am supported by an IDF scholarship from UBC. I
would like to thank Olivia Di Matteo, Rafael Haenel,
and Pedro Lopes for discussions.

* daw@phas.ubc.ca

[1] CLEVE, R., EKERT, A., MACCHIAVELLO, C., AND
Mosca, M. Quantum algorithms revisited. Proc. Roy.
Soc. Lond. A 454 (1998), 339.

[2] COXETER, H. Regular Polytopes.
1973.

[3] IoN, P. Geometry and the Discrete Fourier Transform,
2010.

Dover Publications,

[4] MATHOVERFLOW. Intuitive crutches for higher dimen-
stonal thinking, 2010 (accessed September 10, 2020).

[6] NIELSEN, M. A., AND CHUANG, I. L. Quantum Compu-
tation and Quantum Information. Cambridge University
Press, 2000.

[6] It is a Vandermonde matrix, so the computation is not
hard, merely uninsightful.

[7] In fact, the algorithm builds the intermediate copygons
from scratch, rather than expanding the initial copygon.
The perspective here is visually clearer.

[8] WOOTTERS, W., AND ZUREK, W. A single quantum can-
not be cloned. Nature 299 (1982), 802-803.

mailto:daw@phas.ubc.ca

	Quantum polygons and the Fourier transform
	Abstract
	Introduction
	Regular polygons
	Linkages
	Tensor products
	Perfect powers
	A visual QFT
	Acknowledgments
	References

