
Quantum polygons and the Fourier transform

David Wakeham∗

Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
(Dated: September 18, 2020)

The Hilbert space Hd ' Cd of a qudit is impossible to directly visualize for d ≥ 2. Here, we
explore a shortcut which turns vectors into polygons in the complex plane. This suggests a basis of
regular polygons, for which the active change of basis is the quantum Fourier transform (QFT). We
give an intuitive, visual approach to the QFT, in particular when d = aλ is a perfect power.

INTRODUCTION

The Hilbert space Hd ' Cd of a qudit is impossible
to directly visualize for d ≥ 2. There are many indirect
methods for visualizing higher dimensions [4]. Here, we
will represent vectors as polygons in the complex plane,
following [3], and give visual representations for various
basic operation in the natural basis of regular polygons.

Consider a vector ~v = (vk) ∈ Cd, for k ∈ [d], where
[d] := {0, . . . , d − 1}. Viewing the vector as a map ~v :
[d] → C suggests we place vertices at points vk ∈ C and
label with k. A less visually cluttered approach is to
draw directed edges vk → vk+1 and indicate v0, e.g. with
a white vertex. Then a vector ~v ∈ Cd can be pictured as
a polygon of d sides with a distinguished vertex (Fig. 1).
We call this the polygonal representation.

FIG. 1: A vector ~v ∈ C3 represented as a triangle in C.

For a state |ψ〉 ∈ Hd, we choose some basis |k〉, k ∈
[d], to canonically identify Hd with Cd. For coefficients
|ψ〉 =:

∑
k αk|k〉, |ψ〉 = (αk) is a (normalized) map we

can represent as a d-gon. Note that the phase ambiguity
for a single qudit means that polygons for states form an
equivalence class under rotations around the origin.

REGULAR POLYGONS

The standard basis vectors ~δk are useful for linear alge-
bra, but ill-suited to the polygonal representation. This
suggests we seek a new basis. The most natural choice
is the set of regular polygons centred around the origin.
These will be maps of the form χk = ωkχ0 for some phase
|ω| = 1 and constant χ0 6= 0.

The phase ω describes the angular difference between
successive points. Since a regular polygon has the same
angular difference (from the cetnre) for all points, this

relation also holds for the first and last component, and
we immediately have ωd = 1. We can always rotate and
rescale a polygon, i.e. multiply by some complex z ∈ C,
so that χ0 = 1. Define the primitive dth root of unity
ωd := e2πi/d. Our two conditions, ωd = 1 and χ0 = 1,
suggest we consider the regular polygons

~χsd := (ωskd) . (1)

Convex regular polygons will only occur for values of s =
1 and s = d− 1, as in Fig. 2. Stellated regular polygons
occur for 1 < s < d−1 coprime with d, i.e. gcd(d, s) = 1.

FIG. 2: The polygonal basis for C3.

This gives at most d− 1 polygons, not enough to form
a basis for Cd. To get d vectors, we simply take s ∈ [d].
This will include a “trivial” polygon for s = 0, repre-
sented by the thick white circle in Fig. 2. But in general,
for composite d, it will include wrapped polygons when
s and d share a common factor. We call this the set of
regular polygons. We show some examples in Fig. 3.

FIG. 3: A stellation ~χ2
5 and a wrapped polygon ~χ2

6.

Let (s, d) be the greatest common divisor of s and d,
and define {s, d} := d/(s, d). Then ~χsd is a polygon of
{s, d} sides, which wraps the unit circle g times, called a
polygram in the mathematics literature, and denoted by
Coxeter-Schläfi symbol (s, d){d/s} [2].This has an imme-
diate number-theoretic consequence. The count of s ∈ [d]
relatively prime to d is given by Euler’s totient function
φ(d). Similarly, φ(d/f) counts s for which (d, s) = f ,

2

since (d, s) = f just in case (d/f, s) = 1. Thus, φ(d/f)
counts the polygons wrapping f times. Since d/f = f ′ is
just another way of enumerating factors of d, and every
polygon must wrap f times for some factor f , we find
that ∑

f |d

φ(f) = d. (2)

This identity was first proved by Gauss.

LINKAGES

We have yet to prove that the regular polygons form a
basis. A direct if clumsy method is to form a d×d matrix
from the vectors ~χjd and compute the determinant.[6] A
nicer method is to compute the inner product and show
the regular polygons are orthogonal, and since we have d
of them, form a basis.

Using the geometric series
∑
k r

k = (1 − r)−1(1 − rd)
for r 6= 1, we have

〈~χtd, ~χsd〉 =

d−1∑
k=0

ω
(s−t)k
d =

1− ω(s−t)d

1− ω(s−t) = 0 (3)

for s 6= t, using ω
(s−t)d
d = 1. For s = t, each term is 1, so

the inner product is d. Hence,

〈~χtd, ~χsd〉 = dδs,t . (4)

We can also see this by geometrizing the inner prod-
uct using linkages. The linkage associated with a vec-
tor ~v is the sequence of points L(~v) := (V k), where

V k :=
∑k
j=0 vj . Geometrically, this simply arranges the

complex numbers vk top to tail. We show example in
Figs. 4 and 5, colouring the numbers vk (considered as
vectors from the origin) to distinguish them from the
edges in the polygonal representation.

Note that the linkage for a regular polygon closes (Fig.
4), starting and ending at the origin, unless we have the
trivial linkage for which Vk = k. The argument is sim-
ple: the linkage is geometrically similar to the original
polygon, since the vectors vk comprising the linkage, and
vk+1 − vk comprising the polygon, have a fixed complex
ratio (i.e. fixed scaling and rotation) ω − 1.

FIG. 4: The stellation ~χ2
5 and associated linkage L(~χ2

5).

Let us return to the question of orthogonality. The in-
ner product 〈~χtd, ~χsd〉 is the last component in the linkage

L(~χs−td). Since ~χs−td is a regular polygon, it closes unless
s = t. If s = t, then the linkage is simply a chain of length
d, and hence we rediscover 〈~χtd, ~χsd〉 = dδs,t geometrically.

We can view inner products with a polygon as “me-
chanically” uncurling a linkage. Left-multiplying a vec-
tor ~v by (~χtd)

† leaves the first chain in the linkage, V 0,
alone. But it rotates V 1, V 2, . . . , V d−1 by ω−td . Then
it rotates V 2, V 3, . . . , V d−1 by ω−td , and so on, and ulti-

mately, V k → V kω−tkd . We give an example in Fig. 5,
unzipping a linkage L(~v) with the triangle ~χ1

3. The most
general vector ~w for which 〈~w,~v〉 can be interpreted as a
hinged motion of L(~v) is ~w = (ωk), for phases |ωk| = 1.

FIG. 5: A vector ~v, with linkage L(~v), unzipped by ~χ1
3.

The blue line is the coefficient d−1〈~χ1
3, ~v〉.

Since the ~χsd form an orthogonal basis, the results of
uncurling a linkage L(~v) give coefficients for an expansion
of ~v in regular polygons. Similarly, we can consider states
|ψ〉 =

∑
k αk|k〉 ∈ Hd. Our basis of polygonal vectors can

be made into an orthonormal basis of polygonal states,
|χsd〉 := ~χsd/

√
d. Then, in this new basis,

|ψ〉 =
∑
s

As|χsd〉, As :=
1√
d

d−1∑
k=0

ω−ksd αk . (5)

This is the discrete Fourier transform (DFT). It is a pas-
sive transformation in the sense that it leaves |ψ〉 alone
but implements a basis change.

In a quantum computer, we cannot change the mea-
surement basis, but actively change the state. Define the
quantum Fourier transform (QFT) as the map

|s〉 7→ QFTd|s〉 = |χsd〉 =
1√
d

∑
k

ωksd |k〉 , (6)

and extending by linearity to any |ψ〉 =
∑
s αs|s〉. The

coefficients in the computational basis after this active
transformation will be precisely the Fourier-transformed
coefficients As. We will discuss this operation in more
detail below.

We can define a “generalized” polygon ~χxd := (ωkxd),
for x ∈ [0, d). As argued above, the associated linkage
closes if and only if x is an integer. But how close is it to
closing for arbitrary x? We can check explicitly. Using
the geometric series from (3), for x 6= 0 the tip of the
linkage lies at

d∑
k=0

ωkxd =
1− ωdxd
1− ωxd

. (7)

3

Using Euler’s formula eiθ = cos(θ)+ i sin(θ) and the dou-
ble angle formula 1− cos(θ) = 2 sin2(θ/2) distance from
the origin is

∣∣∣∣1− ωdxd1− ωxd

∣∣∣∣ =

∣∣∣∣ 1− cos(2πx))2 + sin2(2πx)

(1− cos(2πx/d))2 + sin2(2πx/d)

∣∣∣∣1/2
=

∣∣∣∣ sin(πx)

sin(πx/d)

∣∣∣∣ . (8)

This can be used to bound the coefficients in the QFT,
and a related procedure called phase estimation [1], but
we will not discuss this further here.

TENSOR PRODUCTS

Things become more interesting when the Hilbert
space factorizes. Assume that d = ab, so that Hd '
Ha ⊗Hb. To canonically identify these spaces, we define
|k〉 ' |m〉 ⊗ |n〉, for m ∈ [a], n ∈ [b], and

|k(m,n)〉 = |na+m〉 ' |m〉 ⊗ |n〉 . (9)

This corresponds to arranging the d = ab points in a
rectangular array of height b and width a, with points
labeled by (n,m).

Let us consider a regular polygon ~χsd, and see how it
factorizes across Ha ⊗Hb. The kth component is

ωksd = e2πis(na+m)/ab = ωsm/ba ωsnb . (10)

This implies ~χsd = ~χ
s/b
a ⊗ ~χsb. The second factor is a

regular b-gon we call the principal subgon, while the first
factor is a copygon, consisting of a points in a regular
polygon of {d, s} sides. It serves to make a copies offset
by ccw angles ∆φ = 2πs/d, starting with the first copy
at φ = 0. The labelling (9) instructs us to iterate across
the a copies of the b-gon, or arrange numbers into a b×a
matrix and reading every sth entry.

We illustrate in Fig. 6, displaying two factorizations

of a hexagon, ~χ1
6 ' ~χ

1/3
2 ⊗ ~χ1

3 (two triangles) and ~χ1
6 '

~χ
1/2
3 ⊗ ~χ1

2 (three digons). The white vertices represent
the copygon, and form the first vertex of each subgon.

For multiple factors, the procedure iterates, with

~χsabc ' ~χ
s/bc
a ⊗~χs/cb ⊗~χsc and so on. We first factor out the

principal subgon, then iteratively factor the copygons.
We indicate the possibilities for ~χ1

12 in Fig. 7. Dashed
lines are used to indicate a second level of nesting, and as-
sociated arrays are shown. Thus, tensor products induce
a pleasing correspondence between integer factorizations,
multi-dimensional arrays, and polygons.

FIG. 6: Two tensor decompositions of ~χ1
6.

FIG. 7: The non-trivial factorizations of ~χ1
12.

PERFECT POWERS

For a power d = aλ, the labelling (9) extends to an
expansion in base a. For n = (n`) ∈ [a]λ,

k(n) := n0 + an1 + a2n2 + · · · =
λ−1∑
`=0

n`a
` , (11)

The array is a hypercube of λ dimensions, latticized so
that it has a points per side, and as above, entries in ~χsd
process this array in steps of size s. The points are la-
belled with the base d expansion of the angle φ ∈ [0, 2π),
since φ(n) = 2πk(n)/d.

We illustrate for binary powers in Fig. 8. The array
is a hypercube of 2λ points labelled by binary strings.
In turn, these strings give the expansion in binary for
anglular coordinates of points on the corresponding 2λ-
gon. In Fig. 8, we show to build the hypercube using a

decomposition ~χ
s/2λ−1

2 ' ~χs2λ ⊗ ~χ
s
2λ−1 , so that we have a

simply copying digon, and a principal sub-2λ−1-gon. We

4

can orthogonally copy an array, or copy the polygon with
a twist. Similarly, we can build up polygons for d = aλ by
starting with an a-gon, and iteratively making a copies
which are fan uniformly around the circle.

FIG. 8: Iteratively building a hypercube and 2λ-gon
from digons. Binary sequences label angles.

We can also completely factorize a polygon:

~χsaλ = ~χsa
−(λ−1)

a ⊗ · · · ⊗ ~χsa
−1

a ⊗ ~χsa . (12)

Each terms corresponds to a place value in the base a
expansion, with terms decreasing in significance as we go
left to right. The binary case is illustrated in Fig. 9.

FIG. 9: Completely factorizing an octagon into digons.
Digons correspond to bits.

A VISUAL QFT

Equation (12) captures the required sequence of oper-
ations needed to form ~χsd, and hence implement the QFT
on a quantum computer. We start by building the initial

copygon ~χsa
−(λ−1)

a , and then expanding the points on the
unit circle by a factor of a, a total of λ − 1 times. We
call ~χxa 7→ ~χaxa expansion. If we can record the outcome
of each expansion, we can take the tensor product and
obtain ~χsd according to (12).

We picture this for s = 20, d = 33, in Fig. 10. In base
3 (used implicitly in this example), we have s = 202, so
our first step is to construct ~χ2.02

3 . Expanding once gives
~χ0.2
3 , and again gives ~χ2

3. The tensor product of these
three vectors (not pictured) gives χ20

33 .

If we want to implement the QFT on a quantum com-
puter, we are only permitted to use unitary operations.

FIG. 10: Performing the QFT for s = 20, d = 33. Points
have their arguments tripled mod 2π at each step.

Expansion is not unitary, in fact not linear, since

~χxa =
∑
k

ωkxa |k〉 7→
∑
k

ω(a−1)kx
a · ωkxa |k〉

acts on basis vectors in a way that depends on x. But
once x is fixed, it acts via the matrix

E(x)
a = diag(ωkx(a−1)a) . (13)

This is unitary since it has pure phases along the di-
agonal. Similarly, the map which constructs the initial
copygon, defined by

C(x)
a |0〉 = |χxa〉 = diag(ωkxa) ◦QFTa|0〉 , (14)

is unitary, since it composes a unitary matrix with the
QFT, which is unitary.

The no cloning theorem [8] forbids us from recording
the intermediate copygons as we go along. But we need
these intermediate results to perform the tensor product
(12). Thus, to implement the QFT on a quantum com-
puter, we need to compute the factors separately, running
λ parallel calculations. This is easily achieved using the
operators in (13) and (14):

E(aj−1x)
a · · ·E(ax)

a E(x)
a C(x)

a |0〉 = |χxa
j

a 〉 . (15)

Setting x = sa−(λ−1) yields the factors in (13) for j =
0, . . . , λ− 1. Since we have j + 1 operations in (15), the
total number of operations required is

1 + 2 + · · ·+ λ =
1

2
λ(λ+ 1) . (16)

Thus, the total number of operations required in O(λ2).
A final issue is that (15) is using the digits s classically,

but we need a genuine linear map on Hd in order to
take the QFT of an arbitrary state in O(λ2) steps This

can be done using controlled versions of E
(x)
a , C

(x)
a . The

details are beyond our scope, but see [5] for more.[7] We
can generalize this picture of the QFT to an arbitrary
composite d = a0a1 · · · aλ−1, though it is less intuitive
because the number of points in the factors will change.

ACKNOWLEDGMENTS

I am supported by an IDF scholarship from UBC. I
would like to thank Olivia Di Matteo, Rafael Haenel,
and Pedro Lopes for discussions.

5

∗ daw@phas.ubc.ca
[1] Cleve, R., Ekert, A., Macchiavello, C., and

Mosca, M. Quantum algorithms revisited. Proc. Roy.
Soc. Lond. A 454 (1998), 339.

[2] Coxeter, H. Regular Polytopes. Dover Publications,
1973.

[3] Ion, P. Geometry and the Discrete Fourier Transform,
2010.

[4] MathOverflow. Intuitive crutches for higher dimen-
sional thinking, 2010 (accessed September 10, 2020).

[5] Nielsen, M. A., and Chuang, I. L. Quantum Compu-
tation and Quantum Information. Cambridge University
Press, 2000.

[6] It is a Vandermonde matrix, so the computation is not
hard, merely uninsightful.

[7] In fact, the algorithm builds the intermediate copygons
from scratch, rather than expanding the initial copygon.
The perspective here is visually clearer.

[8] Wootters, W., and Zurek, W. A single quantum can-
not be cloned. Nature 299 (1982), 802–803.

mailto:daw@phas.ubc.ca

	Quantum polygons and the Fourier transform
	Abstract
	Introduction
	Regular polygons
	Linkages
	Tensor products
	Perfect powers
	A visual QFT
	Acknowledgments
	References

