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Abstract

A summary of “Comments on black hole interiors and modular inclusions” [1] for the strings
group meeting at the University of British Columbia. A criminally brief overview of alge-
braic quantum field theory and traversable wormholes is included.
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1 AQFT background

1.1 Reeh-Schlieder

We'll start with a brief overview of some aspects of algebraic quantum field theory (AQFT), in-
cluding the Tomita-Takesaki theorems. The basic objects of study in AQFT are (von Neumann)
algebras, which are bounded operators on Hilbert space closed under various operations: you
can add them, you can multiply them, you can take daggers, you can take limits. Finally,
they contain the identity operator. For the moment, we will consider Type III von Neumann
algebras which do not possess a well-defined trace, and return to finite-dimensional Type I
algebras later]|

Given an open region of spacetime U, there is an algebra A of bounded operators on U. By
evolving forward and backward in time, the operators naturally have support on the domain
of the dependence U = D[U], which we’ll draw as a diamond (Fig. . This is called a local

U=D[U]

Figure 1: The domain of dependence of an open set in spacetime, U.

algebra. The set of all bounded operators which commute with everything in A is called the
commutant, and is denoted by .A’. Schematically,

[A, A =0. (1)

It’s usually true that the commutant of a local algebra is just the local algebra associated to
U’, the causal complement of U, i.e. the largest set spacelike separated from U. The relation
Aj; = Ay is called Haag duality [2].

Figure 2: (Haag-dual notions: causal complements and commutant algebras.

'We can classify Type III algebras using the spectrum of the modular operator Ay for a cyclic, separating vector
|U) (see below for definitions). It is believe that in quantum field theories, for any such ¥, the spectrum of Ay
(including accumulation points) is R™ [2]. Equivalently, the spectrum of the modular Hamiltonian is R. This is
called a Type III; algebra.



Local algebras have some surprising and deep properties. The first is the Reeh-Schlieder
theorem. Roughly speaking, this says that, given some local algebra .4, we can create any
state in the Hilbert space by acting on the vacuum with operators in the algebra. By applying
operators here, we can create the moon instantaneously! More precisely, the image of the
vacuum state |Q2) is dense in Hilbert space:

AlQ) = H, )

and we say that the vacuum is cyclic with respect to .A. This result appears to violate causality
and so on; the operators which create the moon must somehow be unphysical. Indeed, we will
show in §2.7| that locality-violating operators are non-unitary.

The moral of Reeh-Schlieder is not that we can violate locality, but rather, that unitarity and
locality are closely related. A second moral is that the vacuum is highly entangled, with short
distance divergences preventing me from drawing a line between the regions and splitting the
Hilbert into factors on either side [2]. Mathematically speaking, one can exploit a “chain” of
locally entangled Bell pairs to act with operators here, and do stuff over there. Reeh-Schlieder
is a fancy, field-theoretic iteration of the old EPR paradox of spooky action at a distance.

Applying Reeh-Schlieder to A’, we learn that the vacuum is also cyclic with respect to the
commutant. This implies that the only operator in A that annihilates the vacuum is the 0
operator itself. To see why, suppose that O € A annihilates the vacuum. If @’ € A’ is any
operator in the commutant, then

0=0/Q) = 0'0|Q) = 00'|Q). (3)

But since the vacuum is cyclic for A’, as we vary O’ we span a dense subset of Hilbert space.
It follows from the closure properties of A that O annihilates the whole Hilbert space! This is
only possible if O = 0, the null operator. We say that the vacuum is separating with respect to
A because only the 0 operator annihilates it; it’s never in the kernel of a non-trivial operator.

1.2 Tomita-Takesaki theory

Cyclic and separating vectors are dense in Hilbert space, since (for instance) it’s easy to see
that A|Q?) is cyclic, separating for invertible A € A. Since most states exhibit a short-distance
divergence in entanglement, it is universal and associated to the algebra rather than the
state. But the state serves as a “witness”, and we can use it to probe the algebraic structure
of entanglement.

Tomita-Takesaki theory is a tool which makes this precise, and allows us to (in principle)
classify Type III algebras. Given a cyclic, separating state |2) for an algebra A4, there is a
antilinear operator S which maps the action of an operator to the action of its dagger:

S:0|Q) — O7Q). (4)

We can perform a polar decomposition of S, splitting it into an antiunitary operator J, and a
positive operator A!/2:
S =JAY2 (5)



Prosaically, this is just a rotation (with a flip) followed by a scaling. The operators J and A are
called modular operators, and they satisfy

J?=1, JS*J=28"" (6)
The two fundamental theorems of Tomita-Takesaki theory are as follows:

1. Conjugation by J maps an algebra to its commutant,

JAT =A'. (7)

2. Algebras are closed under conjugation by A® for real s, also called modular flow:

ABAANTS = A, Vs eR. (8)

We can think of the modular flow as evolution in modular time, with a corresponding modular
Hamiltonian:
H = —logA. (9)

For instance, in the canonical example of a local algebra on a Rindler wedge, J is just
the CPT ma and reflects around this point in the middle, taking us to the complelementary
wedge. Modular flow is just a boost [2]]. Another example is the thermofield double (TFD)
state of entangled AdS black holes [3]. The cyclic separating vector is defined as a finite-
temperature entangled state between two CFTs, CFT; and CFTg:

1
ITFD) = Z[3) > e PERIEL) | BR) = P};/Q\EPR% (10)
E

where |EPR) is the (non-normalisable) maximally entangled state on the two CFTs, E labels
energy eigenstates, and pg o e PH 1t follows that the modular operator is the thermal density
matrix:

2 Modular inclusions and mirrors

2.1 Localised state and mirror operators

Conjugation by J maps an algebra to its commutant. But what about localised states rather
than operators? To create a localised state, we act on the vacuum |Q?) (or any cyclic, separating
vector) with a unitary operator O € A:

) = 019). (11)

An observer in U’ is confined to probing the state with operators O’ € A’. These operators
have the same expectation value in |¢)) as the vacuum state, since the operators commute:

(0 = (20T0'0]0) = (Q|0'010]Q) = (0')q. (12)

2Technically, it is a CRT map, where R stands for reflection in a single spatial coordinate [2].
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It follows that a state localised to U looks like the vacuum to an observer in U’. Incidentally,
this proves our earlier claim that Reeh-Schlieder connects unitarity and locality: if O is unitary,
the state it creates really is localised to U.

We can map a localised state on U to a localised state on U’ using the modular Hamiltonian,
provided we evolve in Euclidean (modular) time. Formally, we write

') = AY2|y) = AV20|Q). (13)

An intuition for the factor of A/2 comes from the Rindler wedge: the Wick-rotated geometry
has a U(1) symmetry where boosts become rotations, so A'/2 simply rotates our state by 7.

Let’s check this works. We need a couple of properties from earlier, and the fact the
vacuum is invariant under CPT:

JP=1, S=JAY? J|Q) =|Q). (14)
It follows that
[y = JPAY20|0) = JSO|Q) = JOTQ) = JOTJ|Q) = 0'|Q), (15)

where O’ = JO!J € A is some operator in U’ by The operator O’ € A’ is totally different
from A'/20, which is not in either algebra, but they act on states in the same way. In other
words, with access to the modular Hamiltonian, we also obtain a state-dependent map for
mapping between operators in U and U’. We call AY20 a mirror operator.

An observer in the right exterior, who has access to the full density matrix, can use the
state-dependent mirror operators to describe physics in the left exterior. The Papadodimas-
Raju proposal, in brief, is that a typical state in a one-sided black hole has enough thermal
entanglement to mimic the construction of TFD mirror operators [4].

2.2 Modular inclusions

We can fine-grain the notion of localised state by considering the modular inclusion of alge-
bras. The gist of modular inclusions is simple: they are subalgebras preserved under modular
flow in one directionE] Formally, suppose that A is a subalgebra of M, with a common cyclic
separating vector |2), and modular operators Apr, As. The inclusion N’ C M is a half-sided +
modular inclusion if flowing backwards (forwards) in the modular time of M preserves N:

ATENALE CN, Vs> 0. (16)
We restrict to half-sided inclusions since “two-sided” inclusion implies M = N/.

Given a modular inclusion, the difference in modular Hamiltonians

1
P=o- (Hm — Hyr) (17)
T

30f course, a much simpler way to map to an excitation in U’ is to apply J, [¢/}) = JO|Q) = JOJ|Q) = O}|Q).
The problem is that this conjugates ©, rather than O, and after applying the T in CPT, this gives an operator with
the correct sense in time.

“This is analogous to a normal subgroups, or any other stable subobject.



is a positive operator Exponentiatingﬁ p gives a one-parameter family
U® = e, (18)

which controls the algebraic relations between M and N. It satisfies the identities [1]

N=U"'MU (19)

Al =UAZU! (20)
Iy = U? (21)
IMmU g = U Iy = U™ (22)

For the moment, we will be consider only the special case where the two wedges share a null
boundary. This means that p acts in a manifestly geometric way [6], with U~® translating in
the null direction a times the translation needed to take M to N. This is also called a modular
translation (Fig. [3).

Figure 3: Left. Modular translating M to obtain the subalgebra N . Right. Proof-by-picture of
(22) for modular translations.

The geometric action of U allows us to “prove” (I9H22) using pictures. The first two are
obvious, since conjugation by U (or U~!) just modular translates the algebra or modular flow
operators. The J identities are more interesting. For instance, to prove (22), we CPT flip
around the point of intersection using either Jx, or Jy/, modular translate by U¢, then flip
back to obtain evolution by U~ (Fig. . You can use similar arguments to derive (21).

3 Traversable wormholes

Modular inclusions fine-grain the notion of localised state, and hence, the state-dependent
construction of mirror operators in §2.1] We will use this to probe deformations of the TFD.
We start by considering the traversable wormhole of Gao, Jafferis and Wall (GJW) [7].

SLoosely speaking, the modular spectrum of the subalgebra A/ is included in the spectrum of M. For a simple
proof, see [5].
®Since these are operators, we technically define exponentiation by
U® = lim (ATA/anAxfia/an)n.

n—oo



3.1 Background

We can perturb the TFD (10) by briefly coupling the CFTs, via a double-trace deformation:
SH(L) = / AL h() Oy (1, 1) OR(—t, 2).

Here, Or and Op are relevant operators on the left and right CFT, with scaling dimension
A < d/2. This requires the alternative boundary conditions of [8]. Relevant deformations
affect the IR of the CFT and leave the UV alone. By the UV/IR correspondence, in the gravity
dual the low-energy EFT is unaffected but the deep bulk will be deformed. The envelope
function h(¢) is switched on briefly at ¢t = 0, with

o\ 2724

h(t)=h (ﬁ) I(to <t < ty), (23)
for some small, dimensionless parameter ~ > 0, and I is an indicator function so that the
coupling is only switched on from ¢ = ¢y to ¢ = t;. The corresponding Kruskal variables for
V =0 are tg,ty — Uy, Uy.

On the quantum side, coupling the CFTs allows us to send signals between them. This is
an instance of a general phenomenon called regenesis [9]. We can also view the coupling as
providing a quantum channel for sending information between the left and right CFT [[10} [11]].
In the bulk, this is dual to shooting in negative energy shockwaves from both boundaries.
These shockwaves decrease the ADM mass and shrink the future horizon, effectively opening
up the throat of the wormhole. More carefully, we demonstrate this by finding null geodesics
(tangent k,,, affine parameter A\) which violate the average null energy condition (ANEC):

/ T ke ky dA < 0. (24)

These are light rays which pass through the wormhole.

We very briefly outline the calculation for the case of the BTZ black hole with AdS radius
¢ and horizon radius r,, but refer the reader to [7] for details. The alternative boundary
conditions modify the bulk 2-point function for ¢, the dual scalar to Oy, r. Going to Kruskal
coordinates z = (U, V), and setting V = V' = 0 so that we are evaluate along a horizon, the
change is

A
>+(U<—>U/), (25)

U U/tn = 9 A 1
AG(U,U") = hCy / 4 dy < ! ) <
Uo

Uh VP11 \U-Uy) \UlU+y

for a constant Cj 7“12{_2A(27r /B)?72A. In turn, this can be used to find the expectation for the
stress-energy via the method of point-splitting:

rz—x’ 2

Tw(2') = lim [@L@;G(w, 7') — %gw&,@”’G(:p, x') — 1g#VM2G(x,:B')] , (26)

where M? = A(A — 2) is the mass squared of the dual scalar field. Since 7T}, = 0 in the
unperturbed BTZ geometry, we can think of this as a 1-loop correction to the stress energy.



The UU component Ty can be numerically evaluated. One finds that Ty is negative when
the coupling is switched on, positive when it is switched off, and decays to 0T at late times as

AhA2C, U

This negative decrement in Ty is precisely the negative energy shockwave. To prove
traversability, the ANEC integral (24) can be explicitly performed along the horizon:
o hT(2A + 1)2 2F1(% —i—A,%—A;%—i—A;(l—l—U@)_l)

dU Tyy =

. T2IA(2A + 1)I(A)PT(A + 124 (14 Ug)AT172 (28)

Plotting numerically, one finds this is negative for all 0 < A < 1, so the wormhole is traversable
as claimed.

An important point is that is telling us how the black hole thermalises at late times.
Soon after Uy, when we switch the coupling off and becomes valid, the polynomial de-
nominator oustrips the logarithmic numerator and 7y ;; = 0. This means that the geometry to
first order is just the usual Hartle-Hawking state, but with a smaller horizon. We will not write
the expression for the change § F in the ADM mass, but it is indeed negative [7].

3.2 Naive modular inclusion

We call the algebras for left and right exterior M and Mpg. Due to the perturbation, these
are no longer analogous to Rindler wedges, but we ignore this complication for the moment.
The exterior algebras no longer commute due to the double-cone overlap or centre M N Mgp.
But we can modular translate to subalgebras N ,r © My r which do commute:

7 =Ng. (29)

These are the local algebras associated with local algebras in the Hartle-Hawking state prior
to the double-trace perturbation.

We now focus on right-hand side of the Penrose diagram, and define Dg (Fig. as the
difference of small and large wedges:

Dr = Mp — Nk. (30)

This strip corresponds to the opened throat of the wormhole, when the perturbation is still
thermalising. Again, we will ignore this and use the simpler approach of [1]] for the moment.

Our results in §2|will allow us localise excitations in the “interior” strip D using operators
in the “exterior" Nr. Geometrically, the idea is straightforward:

1. Start with an operator D € Dpg and perform CPT with respect to M. This gives an
operator D' € M.

2. Since M/, C Ny, is also a modular inclusion, we can map D’ to an operator N’ € N/,.

3. Conjugate N’ with respect to N, yielding a local operator in the “exterior” Ny.



Figure 4: Constructing a state-dependent operator using local algebras in the traversable
wormhole.

Algebraically, this is easy to implement:
D =D =JyDJy — N =U'D'U - N =JyNJy. (31)
More explicitly, using and (22), we have
N = JNU Y IuDIMU Iy = UDU 3, (32)

It’s easy to check that V and D have the same effect on the state, since the vacuum is invariant
under U:
N|Q) = U3DU3|Q) = UD|Q) = SDTU3|Q) = SDT|Q) = D|Q). (33)

One can double-check algebraically [1] that N € Nx.

3.3 Algebraically emergent spacetime?

I'll finish with Jefferson’s qualitative remarks on emergent spacetime. Algebraically, negative-
energy shockwaves “push” the exterior algebras together and create a centre. Similarly, a
positive-energy Shenker-Stanford shockwave, or an anti-time ordered series of such shock-
waves [12], “pulls” the algebras apart. The exterior algebras will commute, but no longer be
commutant. This invites us to imagine a family of spacetimes obtained by perturbing the TFD
with anti-time-ordered shockwaves of positive or negative energy. These spacetimes are not
dynamically related, but there is presumably some natural embedding of “nearby” spacetimes
in the sequence

There’s two limits we can take. The first is to add enough negative-energy shockwaves to
cause the black hole to evaporate completely. If this process has a holographic description, it
should terminate at the Hawking-Page transition, where the canonically dominant geometry
shifts from black hole to thermal AdS. This is defined on a single copy of AdS. Geometrically,
one naively expects an infinitely tall Penrose diagram, which is consisten with thermal AdS; on
the CFT side, two coupled CFTs could perhaps, in some circumstances, become a single CFT.

A second limit is to add lots of positive-energy shockwaves until we disentangle the CFTs
altogether. with an infinitely long wormhole between the two CFTs. The claim is that you can

’For instance, the traversable wormhole can be viewed as a perturbation of the TFD.
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Figure 5: A family of spacetimes obtained by anti-time-ordered shocks. Left. Shenker-Stanford
shocks. Right. GJW shocks.

interpolate between these two pictures by taking the unentangled CFTs and stitching them to-
gether with negative-energy shockwaves; this should be algebraically dual to a family of mod-
ular inclusions. This procedure seems unlikely to work from the boundary perspective, since
entangling and coupling CFTs are different (though a coupling can generate entanglement). A
nice proof-of-concept would be a calculation checking the picture is valid for a positive-energy
shockwave followed by a negative-energy shockwave, and vice versa.

My general concern is that this picture relies on the validity of effective field theory in the
bulk. Spamming your spacetime with shockwaves is a recipe for leaving a perturbatively well-
defined code subspace, and entering a realm where we either cannot make calculations, or do
not expect a holographic dual at all. Before the emergence of spacetime can be understood
using modular inclusions, we need to know when modular inclusions are a valid description of
spacetime!
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