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Introduction

Consider a 2d CFT in a pure state. Quenching is a non-equilibrium
process where we suddenly change the Hamiltonian and let the
system thermalise. If the state is a conformally invariant boundary
state, the quench can be analysed using boundary CFT (BCFT). In
particular, we can calculate entanglement entropies (EE).

According to AdS/BCFT, the dual geometry is a black hole. We
calculate holographic EE, and find agreement with the BCFT re-
sult in some cases. This provides evidence for AdS/BCFT, and
constrains holographic BCFTs, simultaneously. Our analysis also
hints at how behind-the-horizon physics is encoded in the BCFT.

AdS/BCFT and black holes

A 2d BCFT is a CFT on a half space x > 0with conformally invari-
ant boundary conditions. The EE of an interval A = [0, L] is half
the CFT result on [−L, L], plus a novel boundary entropy term [1]:
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The AdS/BCFT dictionary [2] proposes that a holographic BCFT
is dual to AdS cut off by a brane at fixed tension T , where
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The half-space is conformally equivalent to a strip τ ∈ [0, 12β] with
boundary conditions |B〉. The path integral on the strip prepares
a state e−βĤ/4|B〉 whose dual geometry is a BTZ black hole with
brane at temperature β−1 [2, 3]. We continue τ→ t from τ = 1

4β.
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Holographic entanglement entropy

For a holographic state, the EE of an interval A is the length L of
the extremal homologous geodesic in Planck units, SA = L/4GN

[4]. For the BTZ black hole, and |A| = `, we found
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Small intervals A give the thermal result. At large A, there is a
transition to geodesics ending on the brane, and we can probe
behind the horizon using EE. This resembles two intervals in CFT.

BCFT CFT

BCFT entanglement entropy

To calculate EE in the state e−βĤ/4|B〉, we first find Rényi entropies
from a correlator of twists 〈ΦnΦ̄n〉 and take n → 1+. Mapping
the strip to the upper-half plane, and using the method of images,
reduces our computation to a 4-point function on the plane [5].
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By symmetry, this correlator (for twist scaling dimension ∆n) is

〈Φn(w1)Φ̄n(w2)〉 =
(
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)2∆n [η · z212
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]−∆n
F(η),

for some function F(η) of the cross-ratio η = z11̄z22̄/z12̄. The EE for
the interval A = [w1,w2] is SA = limn→1+(1− n)−1 log〈ΦnΦ̄n〉.

Matching entanglement entropies

The function F(η) can be expanded in conformal blocks in the t-
channel (fusion with OPE coefficients C) or s-channel (boundary
operator expansion with coefficients B) [6, 7].

Matching the holographic EE requires vacuum block dominance
in both channels. To implement vacuum dominance, one might
hope to adapt the large-c CFT conditions [7] to BCFTs:
• bulk and boundary blocks exponentiate, Fp,p̂ ≈ e−(c/6)fp,p̂;
• the spectrum of bulk and boundary excitations is gapped.
However, understanding the behaviour of boundary blocks F p̂ as
c→ ∞ is the focus of ongoing work.

Future directions

There are several avenues for further investigation, including:
• extending the analysis to excited states;
• analysing the bulk replica geometry; and
• comparing to supersymmetric solutions.
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