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Why care about quantum gravity?

I Regular gravity is good for understanding the universe at
large scales and the astrophysical objects within it.

I So is quantum gravity! Big Bang and black holes.

I The “easy” problem is black holes because we can plonk
them in a different-looking spacetime, AdS/CFT.
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field theory = CFT) at the asymptotic boundary.
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Conformal field theory

I A regular QFT has Lorentz invariance (isometries of ηµν).
The action is invariant and fields are covariant.

I A CFT also has scale invariance, i.e. zooming in and out:

I For AdS/CFT, we focus on large-N CFTs, which are
almost free.2 Simple fields have vertices suppressed by N .
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States and metrics

I Some CFT states correspond to semiclassical geometries
which “fill in” the cylinder. Example: the vacuum state.

I More interesting: canonical thermal state, where the
probability of observing |E 〉 is proportional to e−βE .

I This turns out to be dual to an AdS black hole!3
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Eternal/external

I With this explicit quantum description, we might hope to
understand (a) the interior, and (b) evaporation.4

I These are good reasons to study quantum gravity!

I Problem: we can’t do either! It’s just the static exterior
geometry, so no interior or evaporation.
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Interior design

I There is no interior because we have a mixed, i.e.
uncertain state. There is uncertainty about what’s inside!

I Maybe we can find a pure state that “looks” thermal.

I On two identical CFTs, the thermofield double (TFD)
purifies ρβ. The dual geometry is the AdS wormhole.5
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A folding projector

I Problem: this is a state on two CFTs! We’d like to get rid
of that fictitious second CFT and still have some interior.

I Geometrically, could hope to fold the TFD in half.

I Quantum-mechanically, we can assure a pure state by
projecting the second CFT onto some fixed state |B〉:

|TFDβ〉12 → 〈B |TFDβ〉1 = |Bβ〉1.
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I It’s not at all obvious how to do this! So let’s do a magic
trick, and Wick rotate real to imaginary time, τ = it:

I This fuses the hyperbola to a circle, and two CFTs to one!

I The CFT is in a thermal state, geometrized by a
“thermal” circle on the outside.
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They cut the outer circle in half, but what happens inside?



Boundary states

I On the CFT, consider states which are mirror symmetric.

I On the circle, we can evolve to the top and bottom! This
gives us states which are “local” in time.

I These special “mirror” states are called boundary states.
They cut the outer circle in half, but what happens inside?



Boundary states

I On the CFT, consider states which are mirror symmetric.

I On the circle, we can evolve to the top and bottom!

This
gives us states which are “local” in time.

I These special “mirror” states are called boundary states.
They cut the outer circle in half, but what happens inside?



Boundary states

I On the CFT, consider states which are mirror symmetric.

I On the circle, we can evolve to the top and bottom! This
gives us states which are “local” in time.

I These special “mirror” states are called boundary states.
They cut the outer circle in half, but what happens inside?



Boundary states

I On the CFT, consider states which are mirror symmetric.

I On the circle, we can evolve to the top and bottom! This
gives us states which are “local” in time.

I These special “mirror” states are called boundary states.
They cut the outer circle in half, but what happens inside?



Boundary states

I On the CFT, consider states which are mirror symmetric.

I On the circle, we can evolve to the top and bottom! This
gives us states which are “local” in time.

I These special “mirror” states are called boundary states.

They cut the outer circle in half, but what happens inside?



Boundary states

I On the CFT, consider states which are mirror symmetric.

I On the circle, we can evolve to the top and bottom! This
gives us states which are “local” in time.

I These special “mirror” states are called boundary states.
They cut the outer circle in half,

but what happens inside?



Boundary states

I On the CFT, consider states which are mirror symmetric.

I On the circle, we can evolve to the top and bottom! This
gives us states which are “local” in time.

I These special “mirror” states are called boundary states.
They cut the outer circle in half, but what happens inside?



Symmetry and EOW branes
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I The purple entanglement wedge is encoded by ρA.8



The Ryu-Takayanagi formula

I In AdS/CFT, we’ll look at spatial subsystems A.

In states
with a nice gravity dual, a miracle occurs:7

I Ryu-Takayanagi (RT): find the minimal area surface γA
which is anchored at A, and divide its area by 4GN ∼ 1/N .

I The purple entanglement wedge is encoded by ρA.8



The Ryu-Takayanagi formula

I In AdS/CFT, we’ll look at spatial subsystems A. In states
with a nice gravity dual, a miracle occurs:7

I Ryu-Takayanagi (RT): find the minimal area surface γA
which is anchored at A, and divide its area by 4GN ∼ 1/N .

I The purple entanglement wedge is encoded by ρA.8



The Ryu-Takayanagi formula

I In AdS/CFT, we’ll look at spatial subsystems A. In states
with a nice gravity dual, a miracle occurs:7

I Ryu-Takayanagi (RT): find the minimal area surface γA
which is anchored at A, and divide its area by 4GN ∼ 1/N .

I The purple entanglement wedge is encoded by ρA.8



The Ryu-Takayanagi formula

I In AdS/CFT, we’ll look at spatial subsystems A. In states
with a nice gravity dual, a miracle occurs:7

I Ryu-Takayanagi (RT):

find the minimal area surface γA
which is anchored at A, and divide its area by 4GN ∼ 1/N .

I The purple entanglement wedge is encoded by ρA.8



The Ryu-Takayanagi formula

I In AdS/CFT, we’ll look at spatial subsystems A. In states
with a nice gravity dual, a miracle occurs:7

I Ryu-Takayanagi (RT): find the minimal area surface γA

which is anchored at A, and divide its area by 4GN ∼ 1/N .

I The purple entanglement wedge is encoded by ρA.8



The Ryu-Takayanagi formula

I In AdS/CFT, we’ll look at spatial subsystems A. In states
with a nice gravity dual, a miracle occurs:7

I Ryu-Takayanagi (RT): find the minimal area surface γA
which is anchored at A,

and divide its area by 4GN ∼ 1/N .

I The purple entanglement wedge is encoded by ρA.8



The Ryu-Takayanagi formula

I In AdS/CFT, we’ll look at spatial subsystems A. In states
with a nice gravity dual, a miracle occurs:7

I Ryu-Takayanagi (RT): find the minimal area surface γA
which is anchored at A, and divide its area by 4GN ∼ 1/N .

I The purple entanglement wedge is encoded by ρA.8



The Ryu-Takayanagi formula

I In AdS/CFT, we’ll look at spatial subsystems A. In states
with a nice gravity dual, a miracle occurs:7

I Ryu-Takayanagi (RT): find the minimal area surface γA
which is anchored at A, and divide its area by 4GN ∼ 1/N .

I The purple entanglement wedge

is encoded by ρA.8



The Ryu-Takayanagi formula

I In AdS/CFT, we’ll look at spatial subsystems A. In states
with a nice gravity dual, a miracle occurs:7

I Ryu-Takayanagi (RT): find the minimal area surface γA
which is anchored at A, and divide its area by 4GN ∼ 1/N .

I The purple entanglement wedge is encoded by ρA.8



Apocalyptic RT

I What happens with an EOW brane? Conjecture: the
minimal surfaces γA can end on the brane.

I Since branes are like mirrors, when we compute
entanglement entropy for A, we really do it for A∪Amirror.

I (It’s the method of images for quantum gravity.)



Apocalyptic RT

I What happens with an EOW brane?

Conjecture: the
minimal surfaces γA can end on the brane.

I Since branes are like mirrors, when we compute
entanglement entropy for A, we really do it for A∪Amirror.

I (It’s the method of images for quantum gravity.)



Apocalyptic RT

I What happens with an EOW brane? Conjecture:

the
minimal surfaces γA can end on the brane.

I Since branes are like mirrors, when we compute
entanglement entropy for A, we really do it for A∪Amirror.

I (It’s the method of images for quantum gravity.)



Apocalyptic RT

I What happens with an EOW brane? Conjecture: the
minimal surfaces γA can end on the brane.

I Since branes are like mirrors, when we compute
entanglement entropy for A, we really do it for A∪Amirror.

I (It’s the method of images for quantum gravity.)



Apocalyptic RT

I What happens with an EOW brane? Conjecture: the
minimal surfaces γA can end on the brane.

I Since branes are like mirrors, when we compute
entanglement entropy for A, we really do it for A∪Amirror.

I (It’s the method of images for quantum gravity.)



Apocalyptic RT

I What happens with an EOW brane? Conjecture: the
minimal surfaces γA can end on the brane.

I Since branes are like mirrors,

when we compute
entanglement entropy for A, we really do it for A∪Amirror.

I (It’s the method of images for quantum gravity.)



Apocalyptic RT

I What happens with an EOW brane? Conjecture: the
minimal surfaces γA can end on the brane.

I Since branes are like mirrors, when we compute
entanglement entropy for A,

we really do it for A∪Amirror.

I (It’s the method of images for quantum gravity.)



Apocalyptic RT

I What happens with an EOW brane? Conjecture: the
minimal surfaces γA can end on the brane.

I Since branes are like mirrors, when we compute
entanglement entropy for A, we really do it for A∪Amirror.

I (It’s the method of images for quantum gravity.)



Apocalyptic RT

I What happens with an EOW brane? Conjecture: the
minimal surfaces γA can end on the brane.

I Since branes are like mirrors, when we compute
entanglement entropy for A, we really do it for A∪Amirror.

I (It’s the method of images for quantum gravity.)



Peeking behind horizons

I Let’s use our apocalyptic RT formula in the black hole.

I Since ρA is dual to the purple entanglement wedge, we
should have access to physics behind the horizon.

I We did explicit calculations9 to find regimes γA falls in.
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I Circling back round to our initial motivation, the brane
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